The BSM-AI project SUSY-AI: Reinterpreting SUSY LHC Limits with Machine Learning

Sascha Caron, Jong Soo Kim, Krzysztof Rolbiecki, Roberto Ruiz de Austri, <u>Bob Stienen</u> **b.stienen@science.ru.nl**

netherlands

Eur. Phys. J. C (2017) 77: 257 DOI: 10.1140/epjc/s10052-017-4814-9

Radboud University

Supersymmetry (SUSY)

- and bosons
- Predicts > 2 times the amount of particles we know from experiment: SM particles and SUSY partners of these particles
- In perfect SUSY: SM particles and their partners only differ in spin -

- Theoretical model of new physics, introducing a symmetry between fermions

In broken SUSY: e.g. masses may differ, but coupling types are identical

Supersymmetry (SUSY)

- Minimal version (MSSM) adds $\sim O(100)$ free parameters
- \sim 19 parameters if only looking at the phenomenologically relevant ones (pMSSM)

Regardless: SUSY has not been discovered (yet), so...

The Analysis Problem

Time = O(hours)

Model point

Simulate events Simulate detector and its response

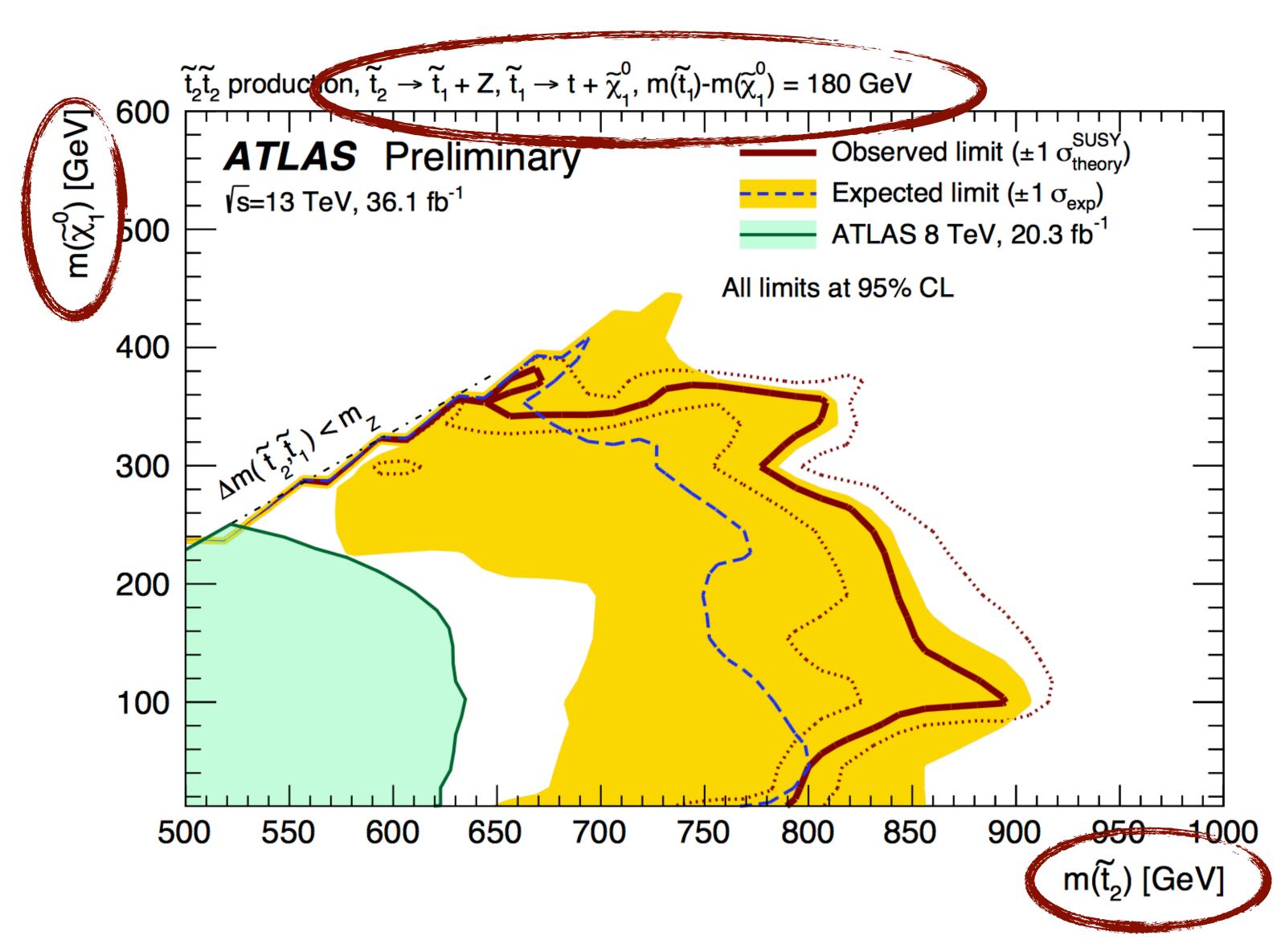
Event reconstruction

Calculate cross section

Compare results with experiment

Exclusion

The Plot Problem



atlas_conf_2017_019

Contents

- Machine Learning
- Data and approach
- Results
- Confidence
- Applicability
- Conclusions

Machine Learning

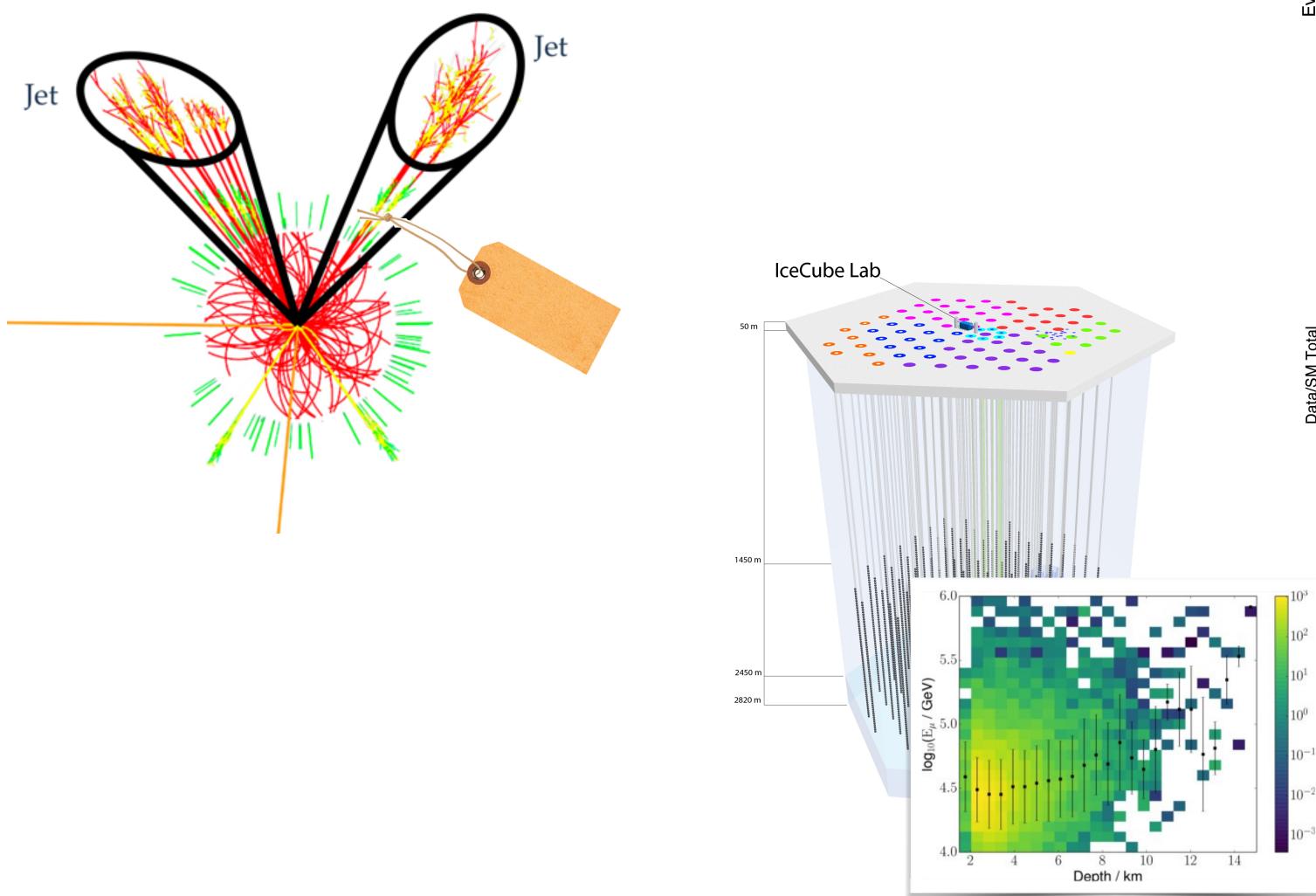
- Statistics of big data
 - interpolation
- Wide range of algorithms... (e.g. boosted decision trees, k-nearest neighbours, neural networks)
- ... and applications

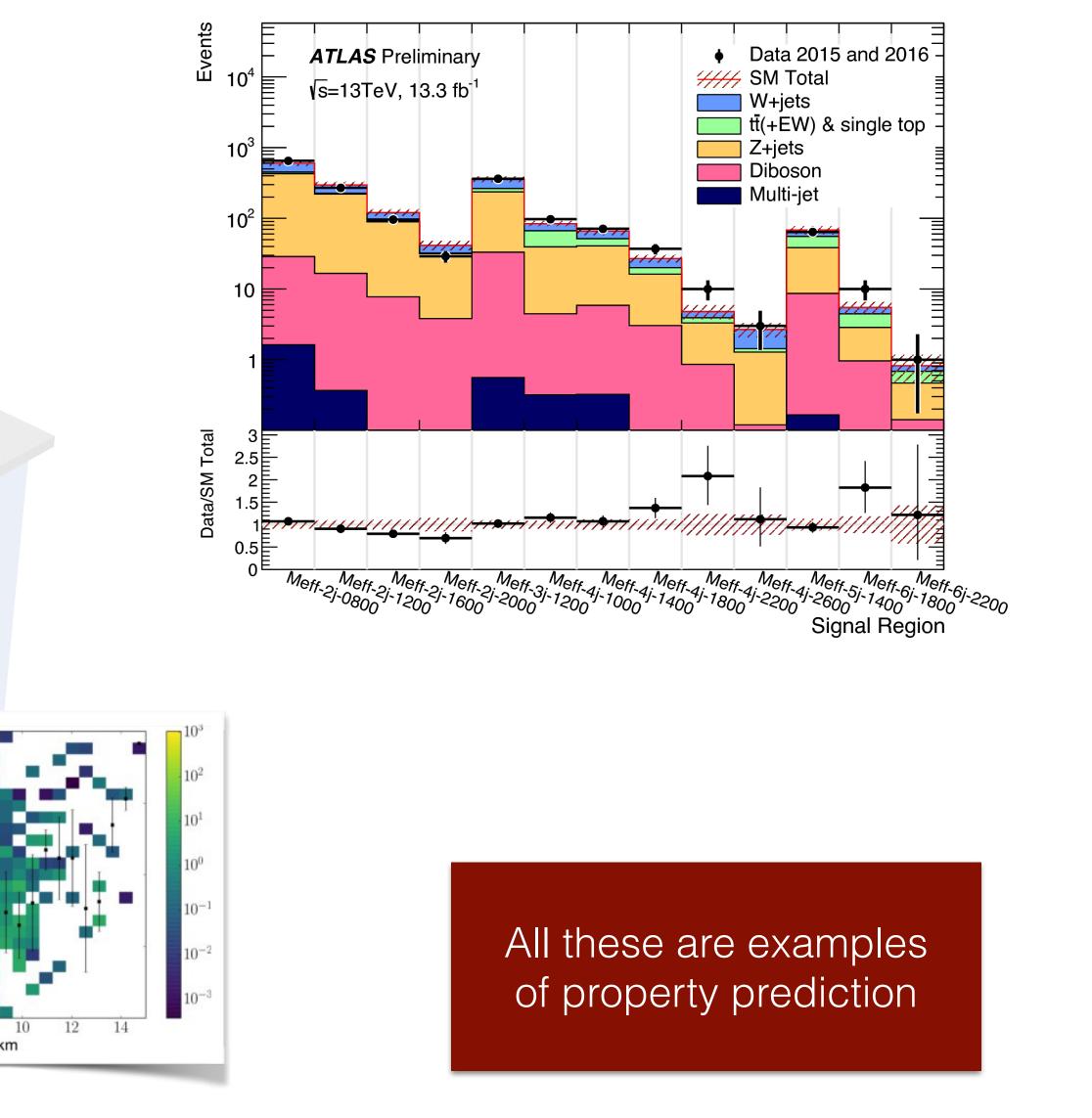
- Prediction of data properties based on example (training) data via smart

Examples of Machine Learning

0.12189 ••••/• ••••• •••••

Examples of ML in HEP





10

Property prediction

Data X with known property y

Machine Learning algorithm f(x)

f(x) predicts y

Property prediction

Data X with known property y

New data Xnew with a known value for property y

Machine Learning algorithm f(x)

prediction of y for Xnew

Property prediction

Data X with known property y

A thing on its own

raining

Machine Learning algorithm f(x)

prediction of y for Xnew

The idea

Training data >300,000 model points in pMSSM with exclusion as determined by:

- ATLAS at 8TeV [arXiv: 1508.06608]
- Barr & Liu at 13TeV [arXiv: 1605.09502]

All data has correct <u>Higgs mass</u> and <u>relic density</u> (upper limit), and is not excluded by precision experiments (<u>LHCb</u>, e.g. Bs decay) or by <u>LUX</u> or <u>Xenon100</u>

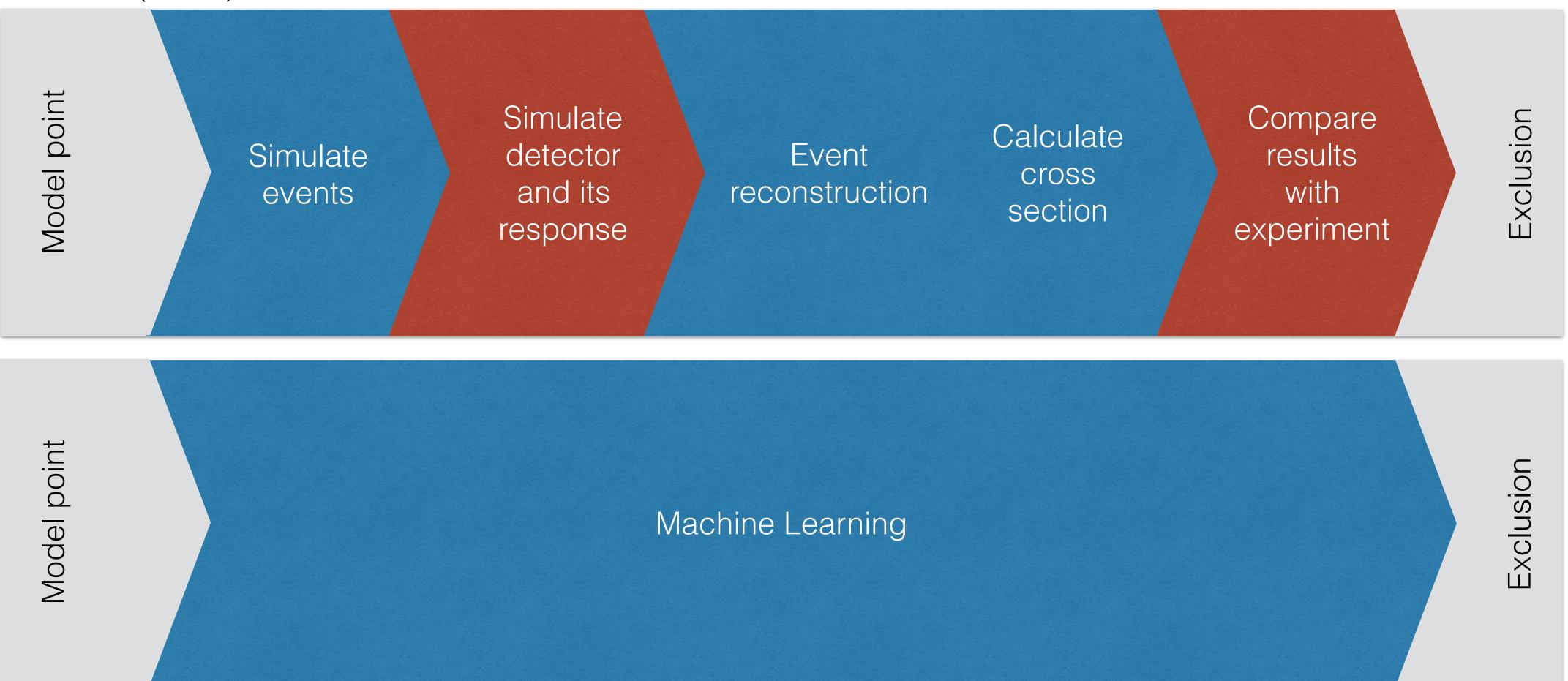
Algorithm

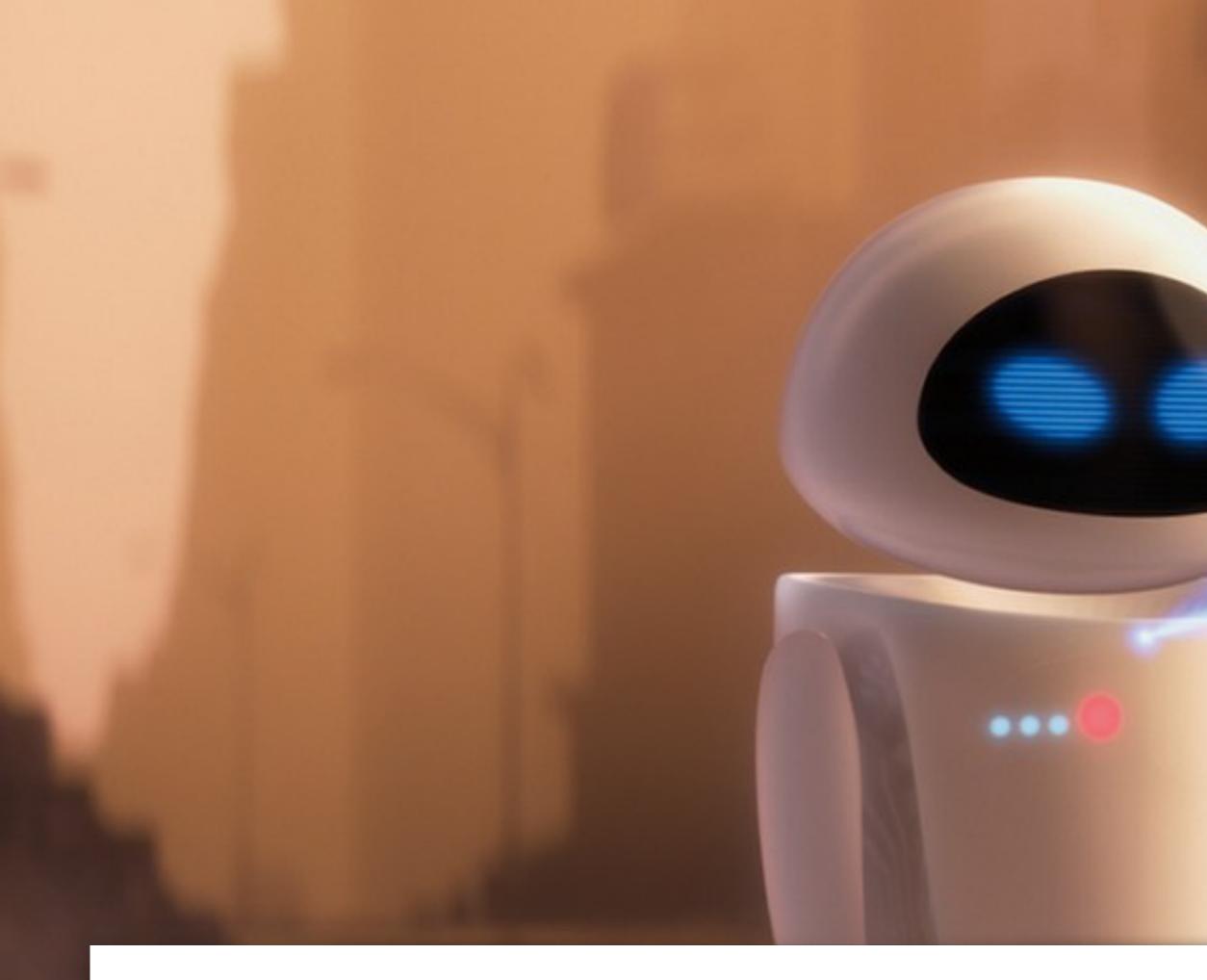
Random Forest (a smartly constructed set of decision trees) in scikit-learn Python package

Machine Learning as a tool to reinterpret experimental results and to determine the exclusion of model points

The idea

Time = O(hours)



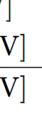


Data and Approach What is the problem exactly?

Dataset: pMSSM

- 1. R-parity is conserved
- 2. No symmetry breaking mechanism is assumed
- Minimal flavour violation 3.
- 4. Lightest neutralino is the lightest SUSY particle
- 5. First two sfermion generations are mass degenerate
- 6. First two generations have negligible Yukawa couplings

Parameter	Description	Scanned range
$\overline{m_{ ilde{L}_1}}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ doublet soft breaking slepton mass	[90 GeV, 4 TeV]
$m_{ ilde{E}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ singlet soft breaking slepton mass	$[90~{\rm GeV},4~{\rm TeV}]$
$m_{ ilde{L}_3}$	$3^{\rm rd}$ gen. $SU(2)$ doublet soft breaking slepton mass	[90 GeV, 4 TeV]
$m_{ ilde{E}_3}$	$3^{\rm rd}$ gen. $SU(2)$ singlet soft breaking slepton mass	[90 GeV, 4 TeV]
$m_{ ilde{Q}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ doublet soft breaking squark mass	[200 GeV, 4 TeV]
$m_{ ilde{U}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ singlet soft breaking squark mass	[200 GeV, 4 TeV]
$m_{ ilde{D}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ singlet soft breaking squark mass	[200 GeV, 4 TeV]
$m_{ ilde{Q}_3}$	$3^{\rm rd}$ gen. $SU(2)$ doublet soft breaking squark mass	[100 GeV, 4 TeV]
$m_{ ilde{U}_3}$	$3^{\rm rd}$ gen. $SU(2)$ singlet soft breaking squark mass	[100 GeV, 4 TeV]
$m_{ ilde{D}_3}$	$3^{\rm rd}$ gen. $SU(2)$ singlet soft breaking squark mass	[100 GeV, 4 TeV]
A_t	Stop trilinear coupling	[-8 TeV, 8 TeV]
A_b	Sbottom trilinear coupling	[-4 TeV, 4 TeV]
$A_{ au}$	Stau trilinear coupling	[-4 TeV, 4 TeV]
$ \mu $	Higgsino mass parameter	[80 GeV, 4 TeV]
$ M_1 $	Bino mass parameter	[0 TeV, 4 TeV]
$ M_2 $	Wino mass parameter	$[70~{\rm GeV},4~{\rm TeV}]$
M_3	Gluino mass parameter	[200 GeV, 4 TeV]
M _A	Pseudoscalar Higgs mass	[100 GeV, 4 TeV]
aneta	Ratio of vacuum expectation values	[1, 60]



Analyses

Final State

0 lepton + 2-6 jets +0 lepton + 7–10 jets + E_T 1 lepton + jets + E_T $\tau(\tau/\ell) + \text{jets} + \not\!\!E_T$ SS/3 lepton + jets + E_T b-jets + 0/1 lepton + E_T monojet 0 lepton stop search 1 lepton stop search 2 lepton stop search monojet search stop search with Z in 2*b*-jets sbottom search asymmetric stop search 1 lepton plus Higgs final state dilepton final state 2τ final state trilepton final state four-lepton final state disappearing track Long-lived particle sea $H/A \to \tau \tau$ search

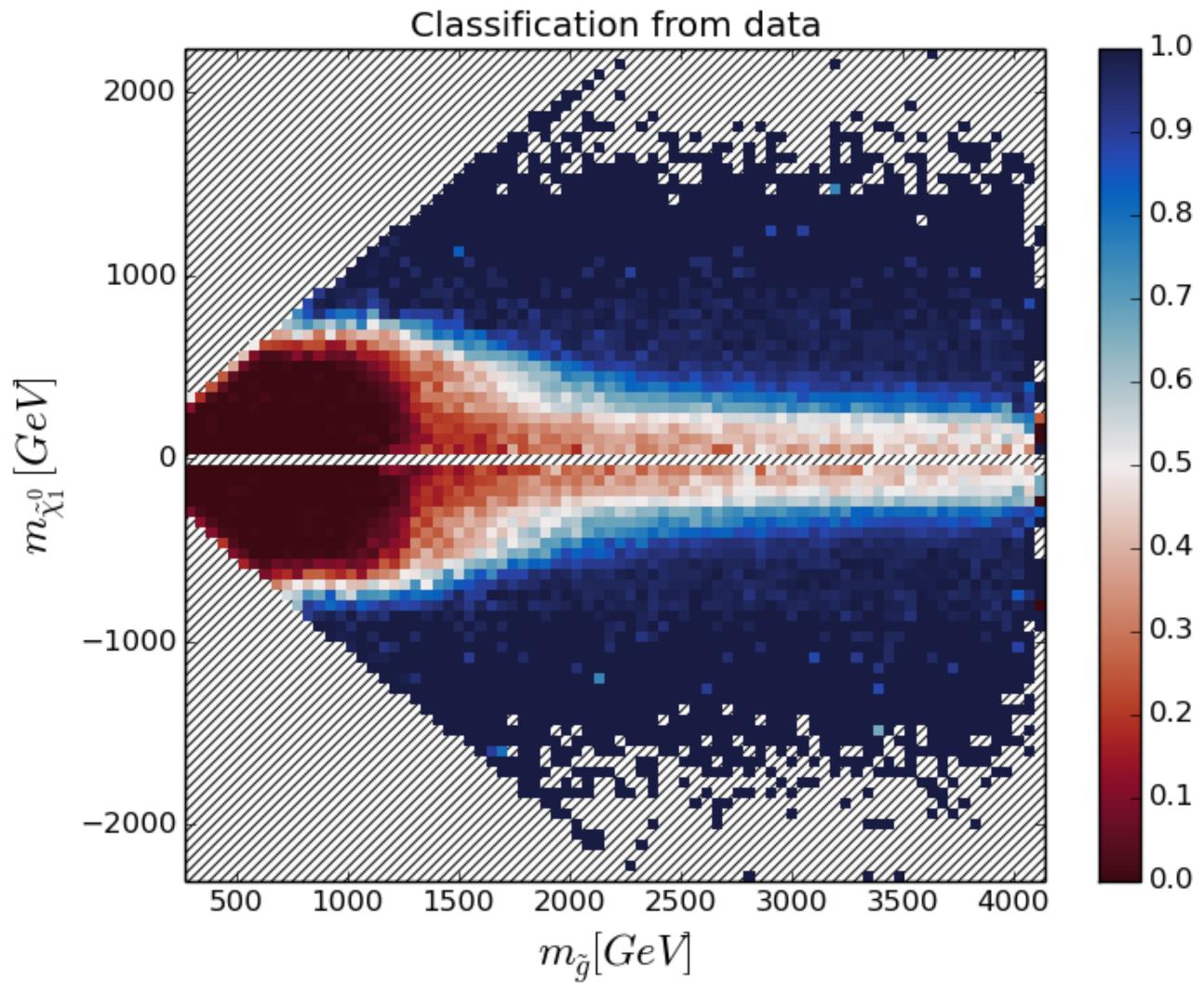
Category	
Inclusive	

Third generation	
squarks	

Electroweak

arch	Other

Dataset: pMSSM



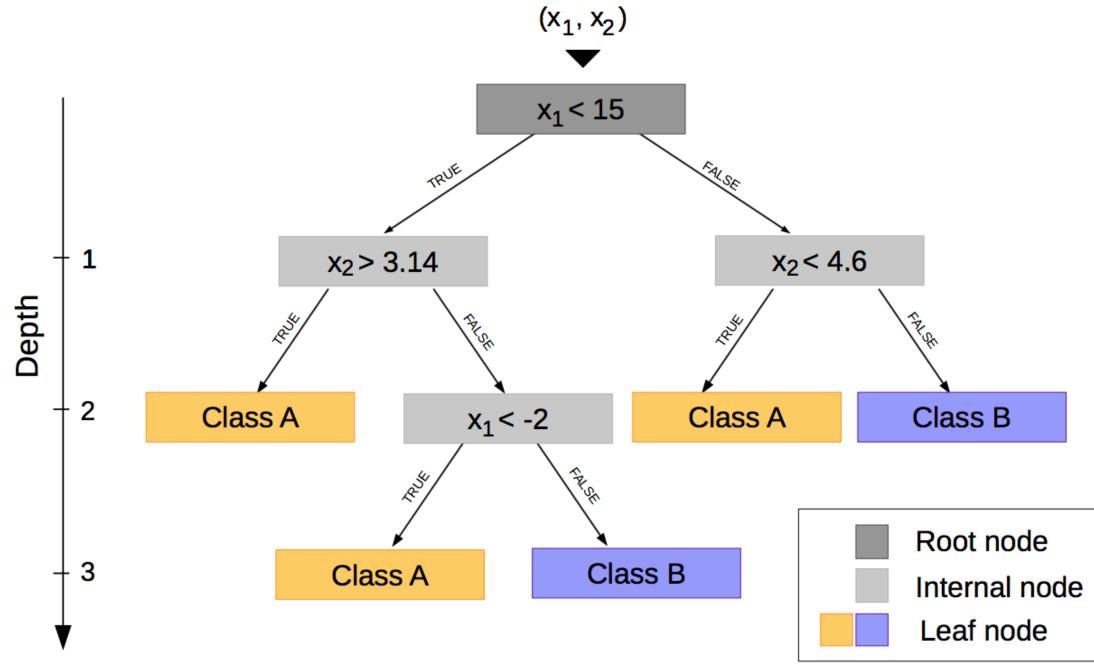
Fraction

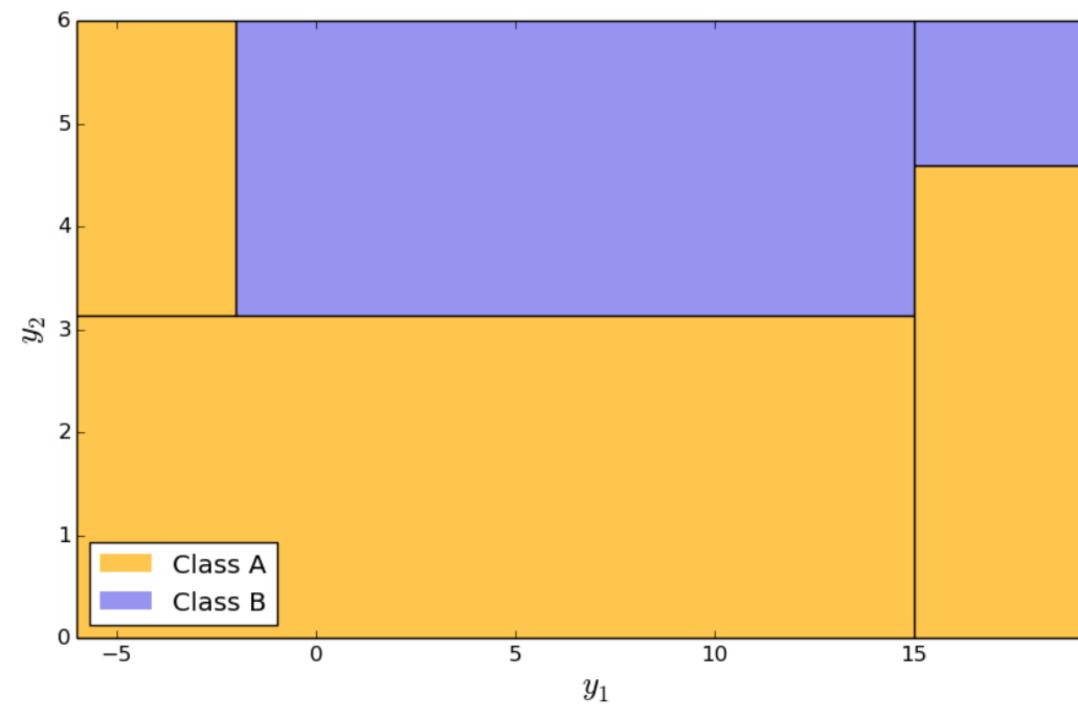
of allowed

model

points

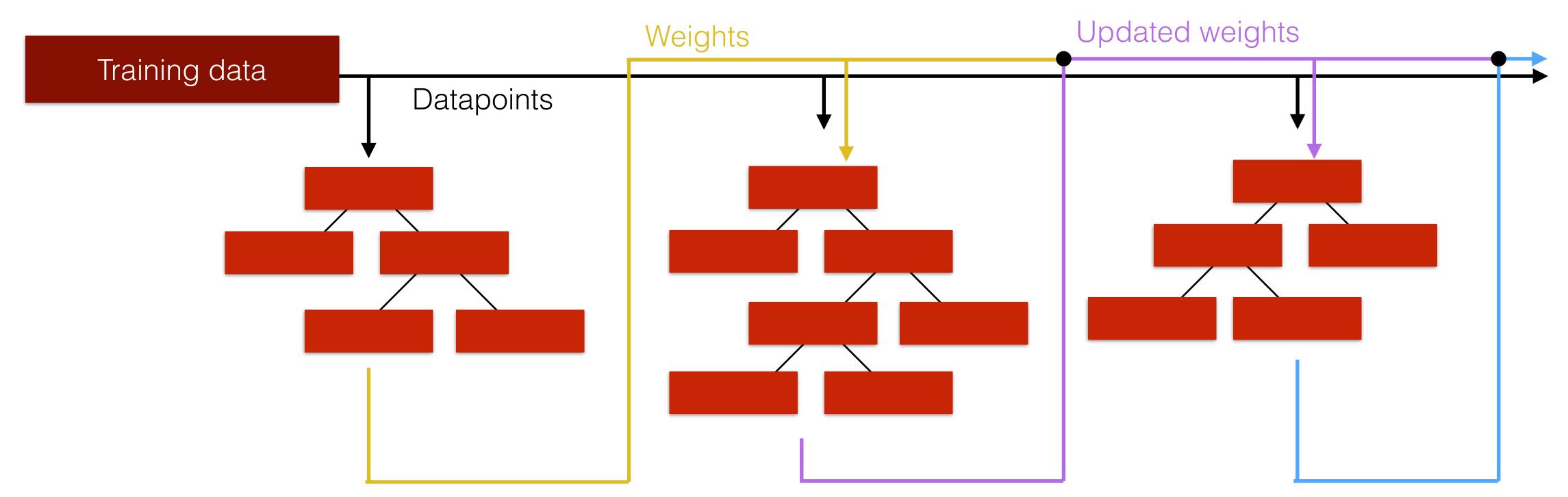
Decision trees





Boosted decision trees

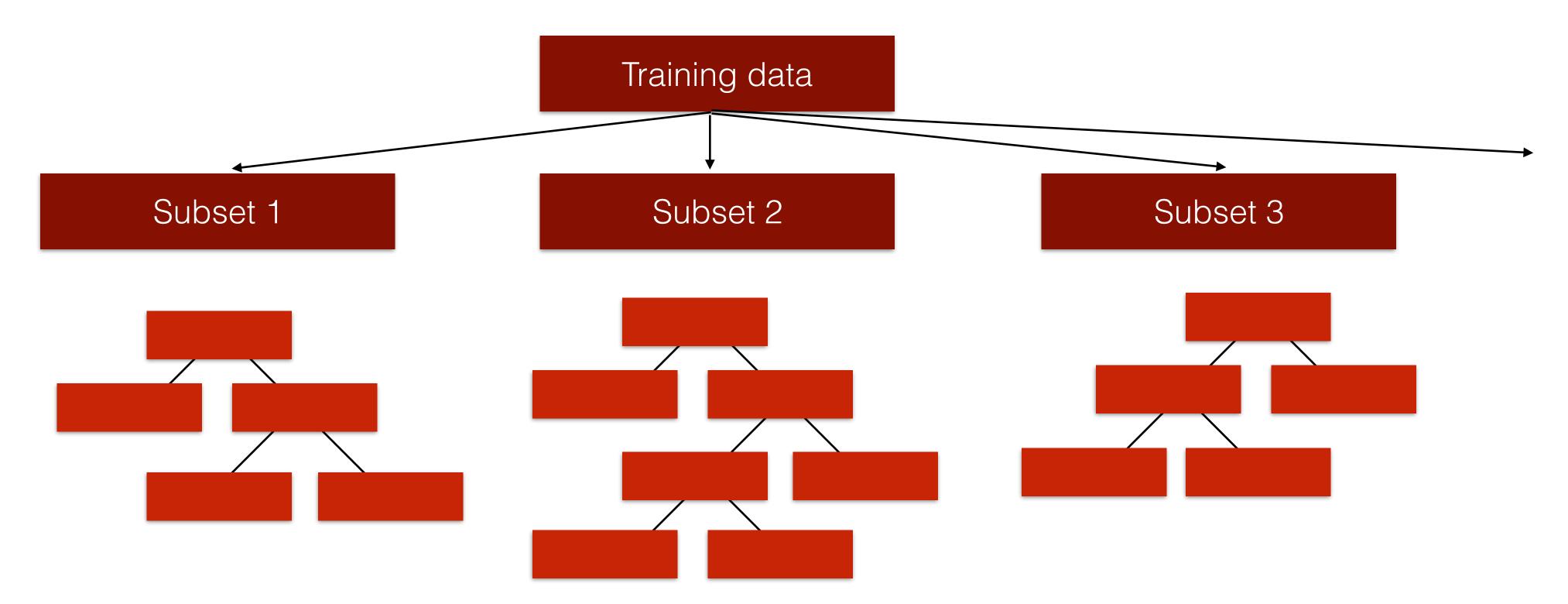
- Trees are combined (ensemble) into single classifier
- previous tree(s) are predicted better



Each next tree is trained on same data set with updated weights, so misclassifications of

Random Forest (1/2)

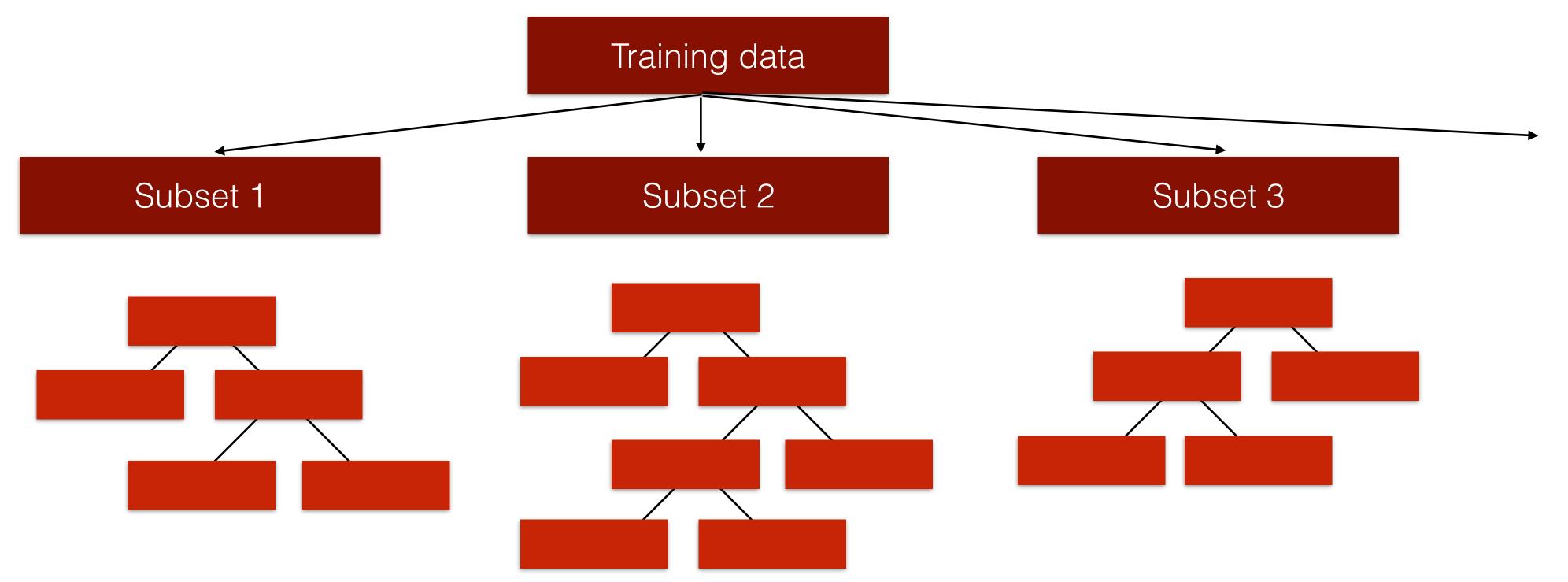
- Combination of multiple decision trees (ensemble), prediction by majority vote -
- ----trained on unique subset of training data)



Introducing the randomness in the forest: trees are constructed with *bagging* (each tree

Random Forest (2/2)

- Subsets are of the same size as training data set and data points are selected with replacement \longrightarrow same datapoint can be selected multiple times
- Moreover, only subset of parameters is considered at each node to split on —



~63.2% of model points in subset are unique

Random Forest vs Boosted Decision Trees (1/2)

- boosting respectively
 - Boosting: train each tree iteratively to do better on the mistakes of the
 - them.
- Both bagging and boosting are well understood methods to reduce overtraining.

- Both are sets of decisions trees, but constructed in different ways: bagging vs

previous trees (increase weight of misclassified points by previous tree)

- Bagging: introduce randomness in training of the trees and average over

Random Forest vs Boosted Decision Trees (2/2)

- Boosting reduces in theory both bias and variance, but does tend to overfit sometimes. It uses shorter trees and is faster in training and use.
- Bagging is less sensitive to outliers and its output is more closely linked to prediction confidence. Also: out-of-bag estimation

Out-of-bag estimation

- Only ~63.2% of training data is used in training of a single tree
- Use remaining 37.8% for independent testing -
- This can be done for every single tree in the forest
- Lots of trees —> independent test on all training data -
- Combined output is independent prediction by forest on its training data —> useful for testing purposes No train:test split needed!

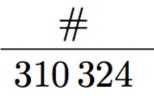
Random Forest configuration

Optimal configuration was found via a grid search

- Number of trees 900
- Maximum features considered each split 12 (out of a total of 19)
- Maximum depth of each individual tree 30

Out-of-bag vs train:test split

Accuracy: (TP+TN) / all

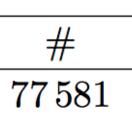


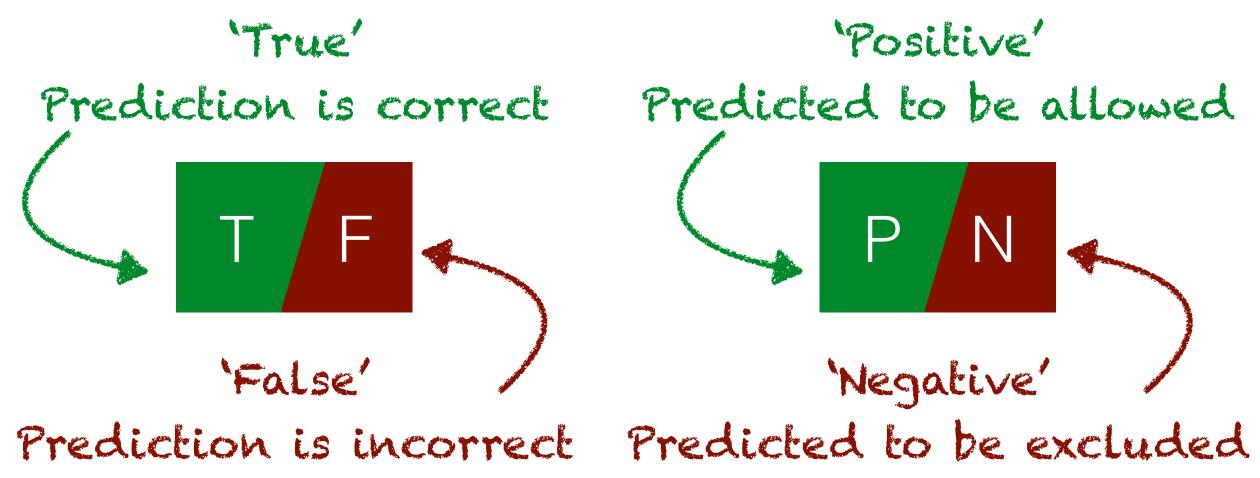
Precision: TP / (TP + FP)

Sensitivity TP / (TP + FN)

Negative prediction value TN / (TN + FN)

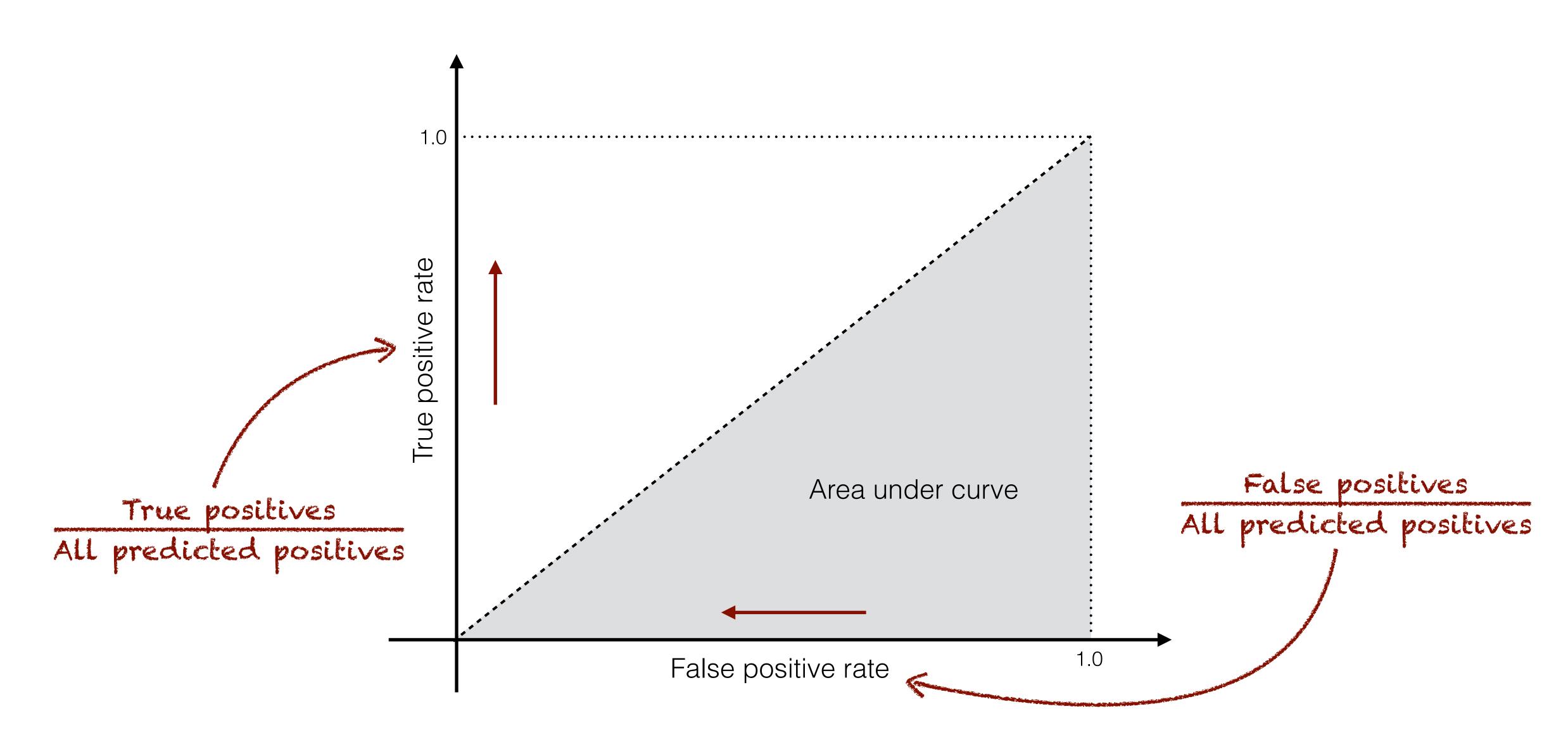
Specificity TN / (TN + FP)



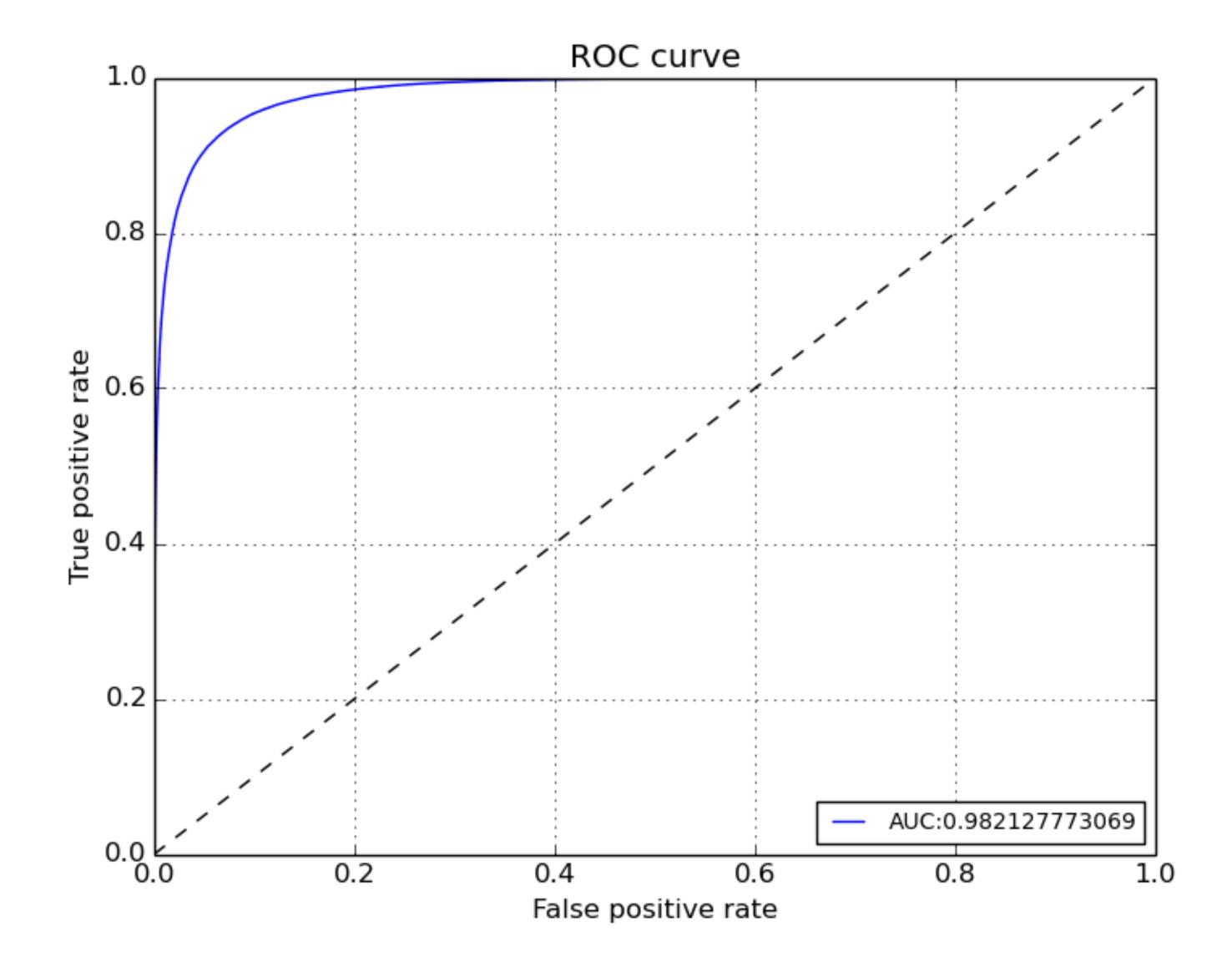


	Ou	it-of-bag							
# / total	Accuracy	Precision	Sensitivity	NPV	Specificity				
1.0000	0.93226	0.93951	0.94665	0.92152	0.91133				
Dataset splitting train:test = $75:25$									
	*								
# / total	Accuracy	Precision	Sensitivity	NPV	Specificity				
$\frac{\# / \text{ total}}{1.0000}$	—				Specificity 0.91491				
11 1	Accuracy	Precision	Sensitivity	NPV	<u> </u>				

Introduction to ROC curves

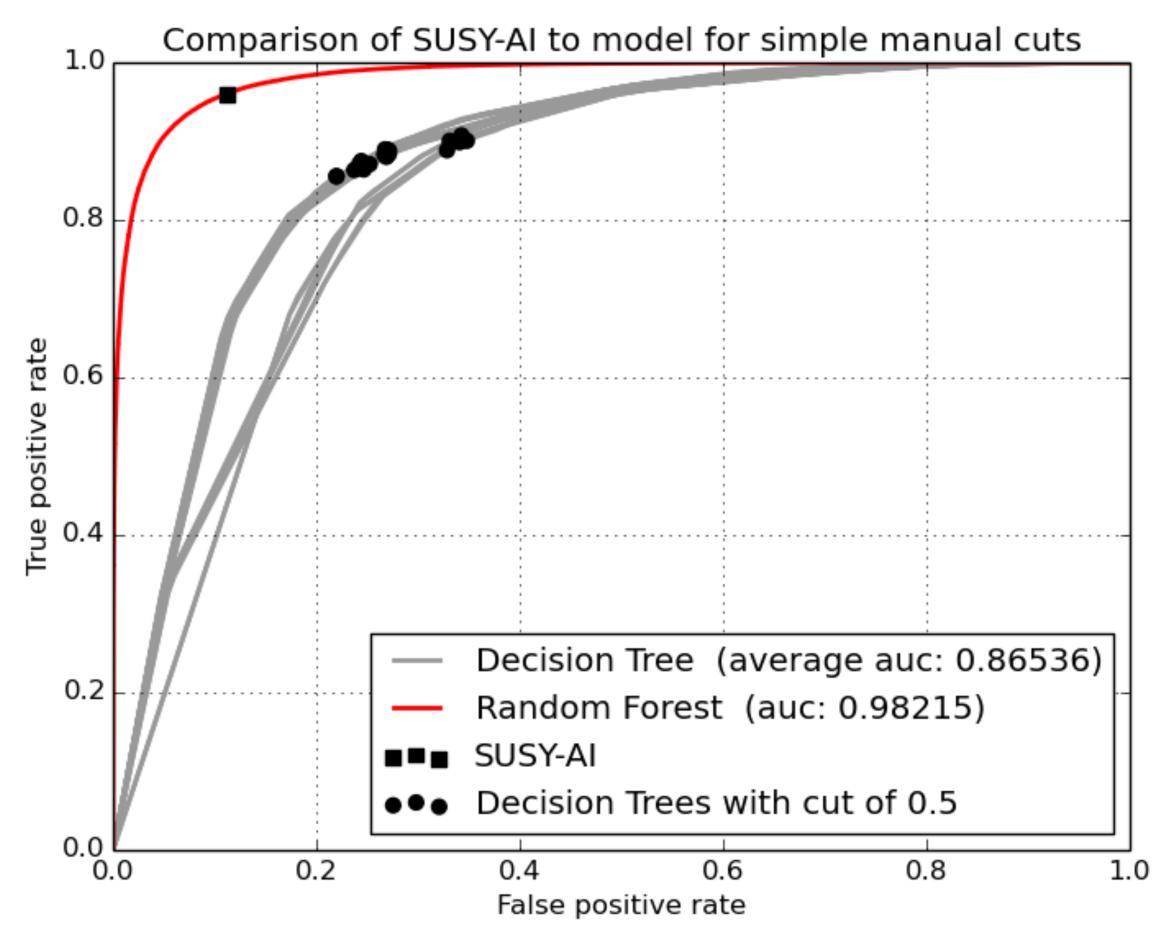


ROC curve



Comparison to model for human

- 20 individual decision trees with maximum depth of 5 (=21 cuts in parameter space)
- Markers are placed at value for cut with the highest accuracy

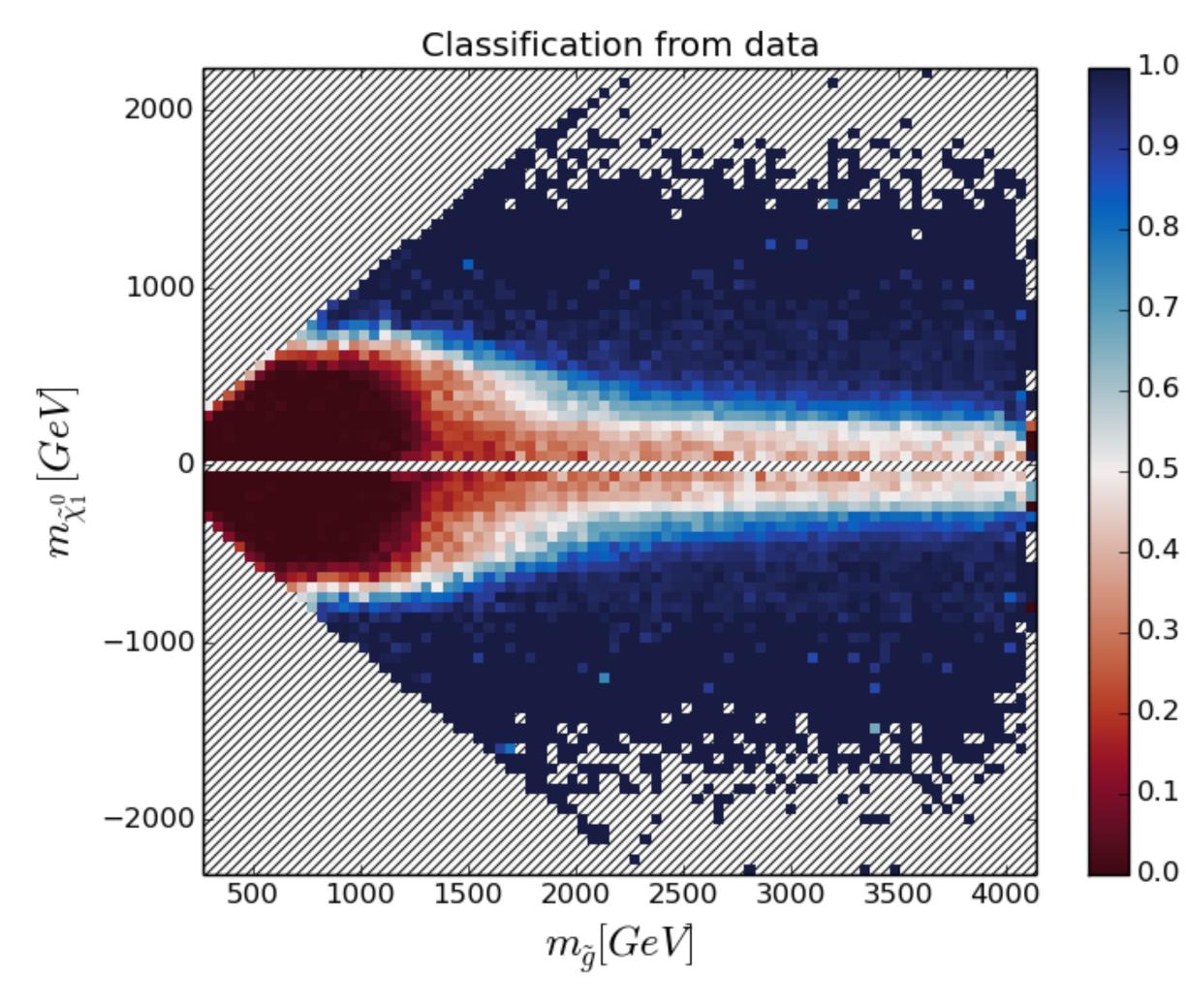


Spot the differences

EVE

Spot the differences

Performance gluino vs neutralino1

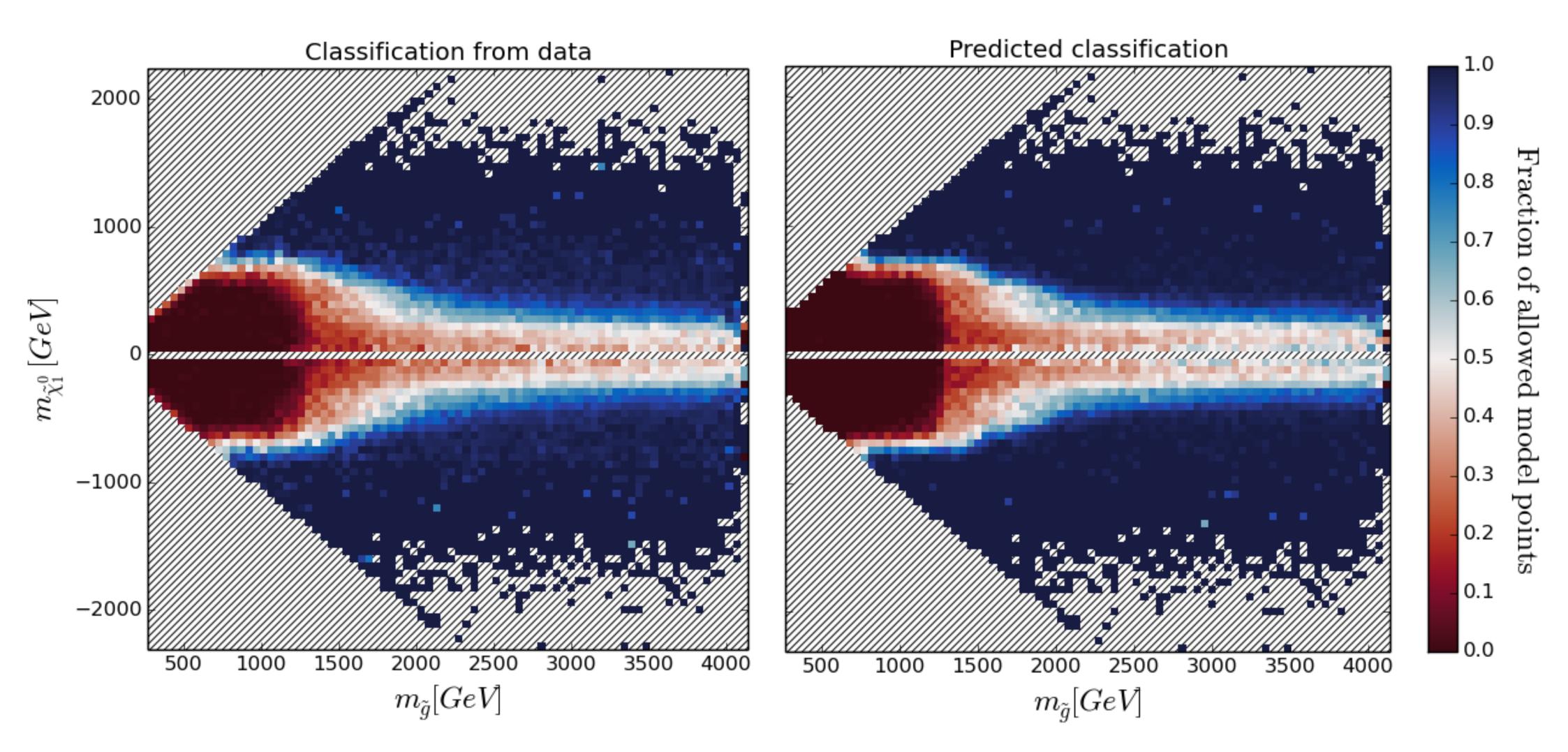


0.9 Т raction 0.8 0.7 of. 0.6 allo ₹ eo 0.4 model 0.3 points 0.2

Performance gluino vs neutralino1

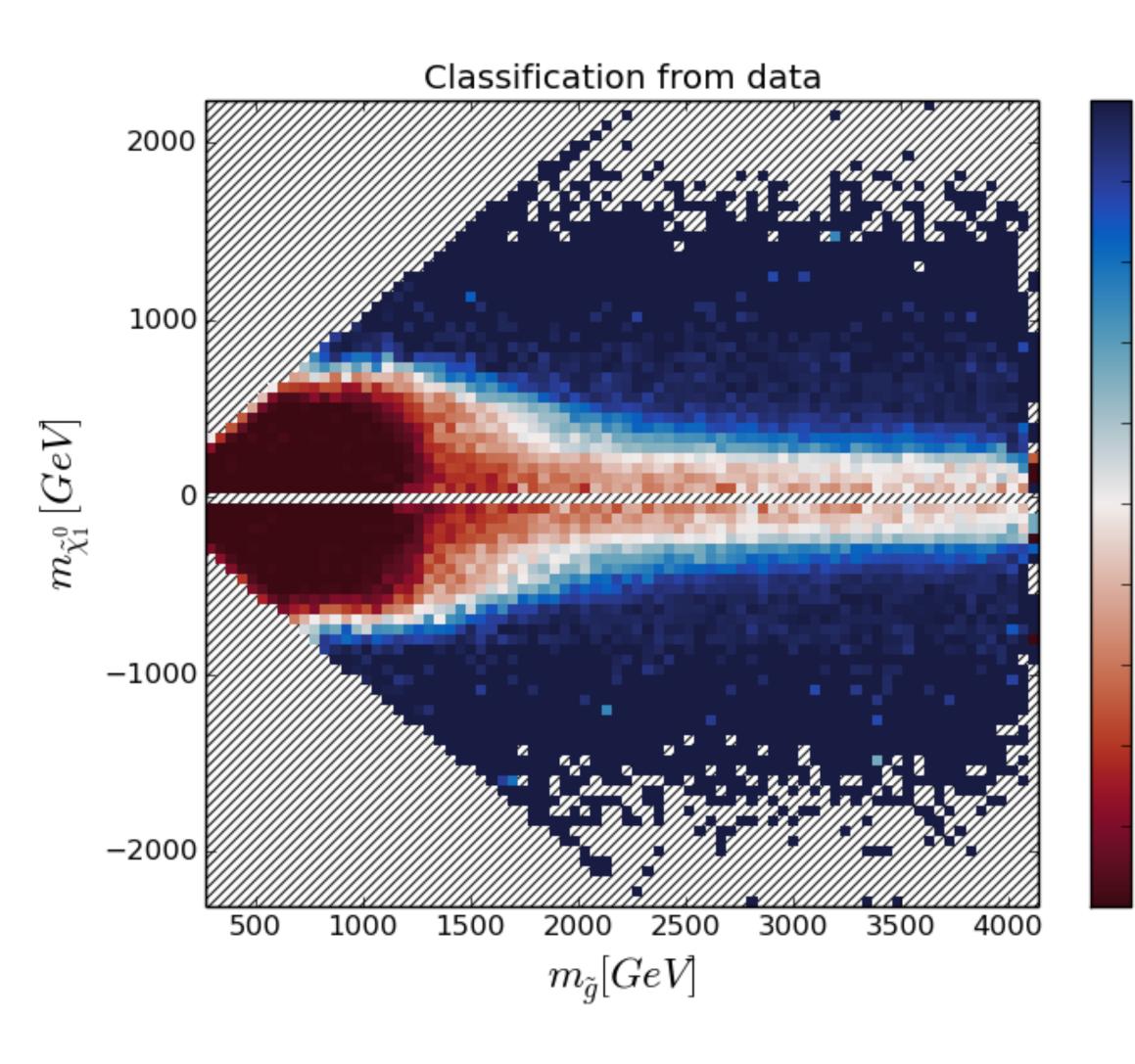
93.2% accuracy @ 8TeV

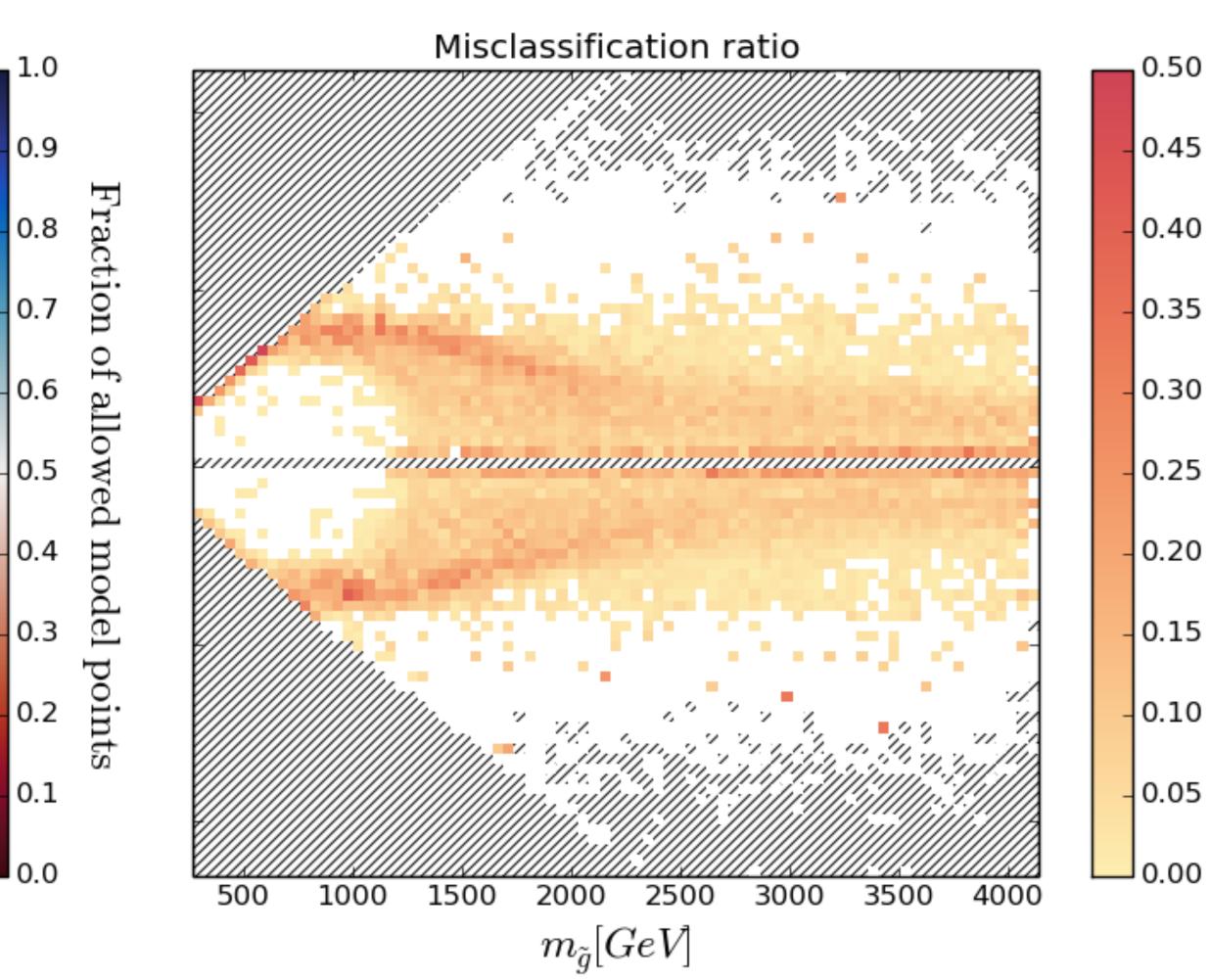
92.7% accuracy @ 13 TeV



Performance gluino vs neutralino1

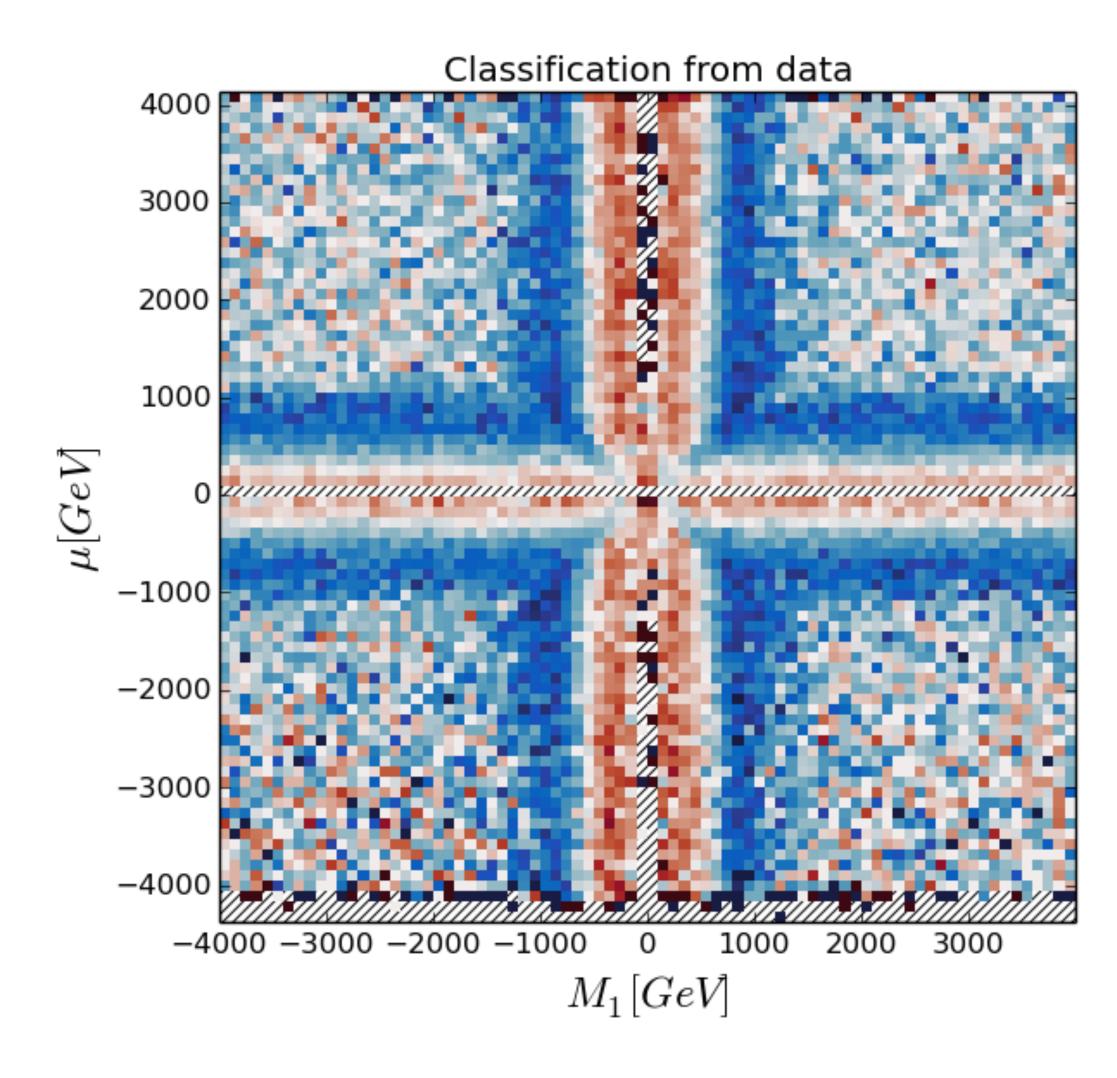
93.2% accuracy @ 8TeV

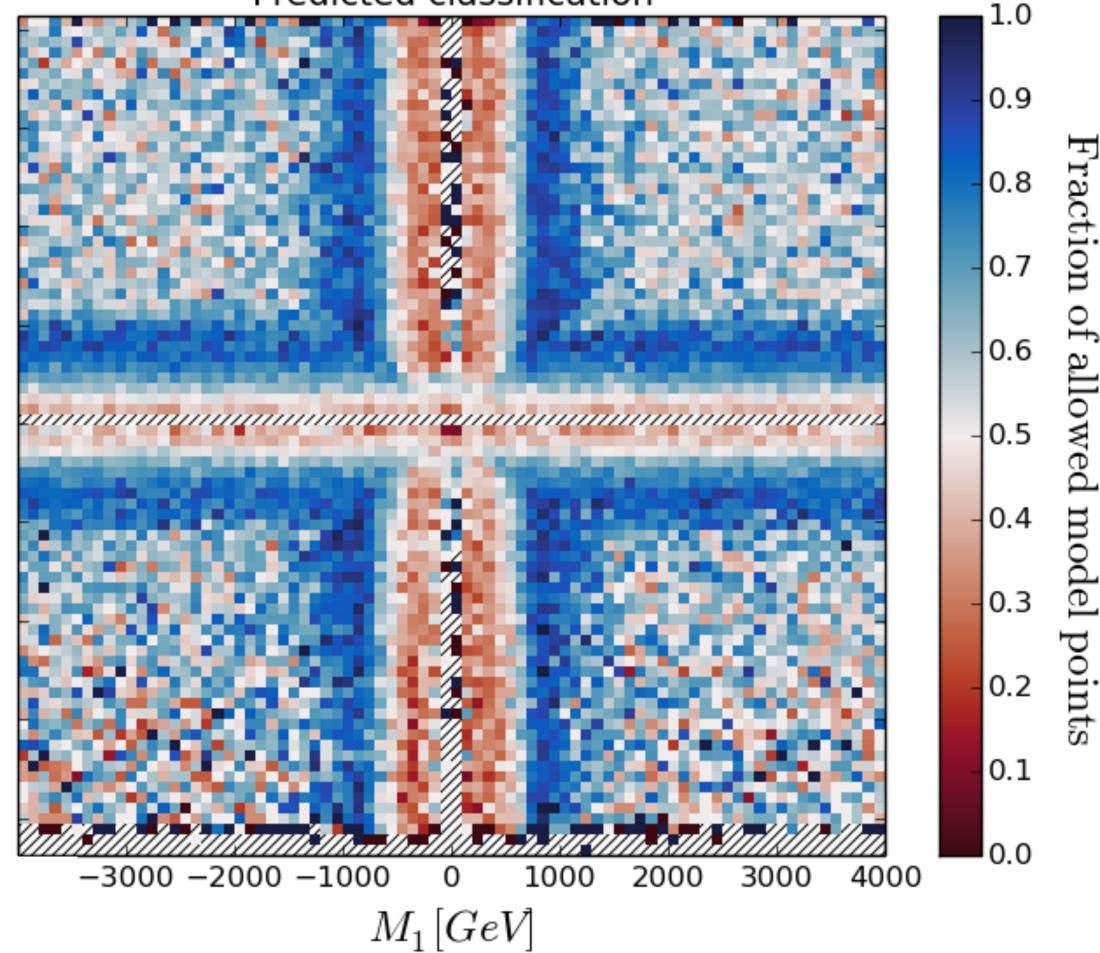




Performance M1 vs mu

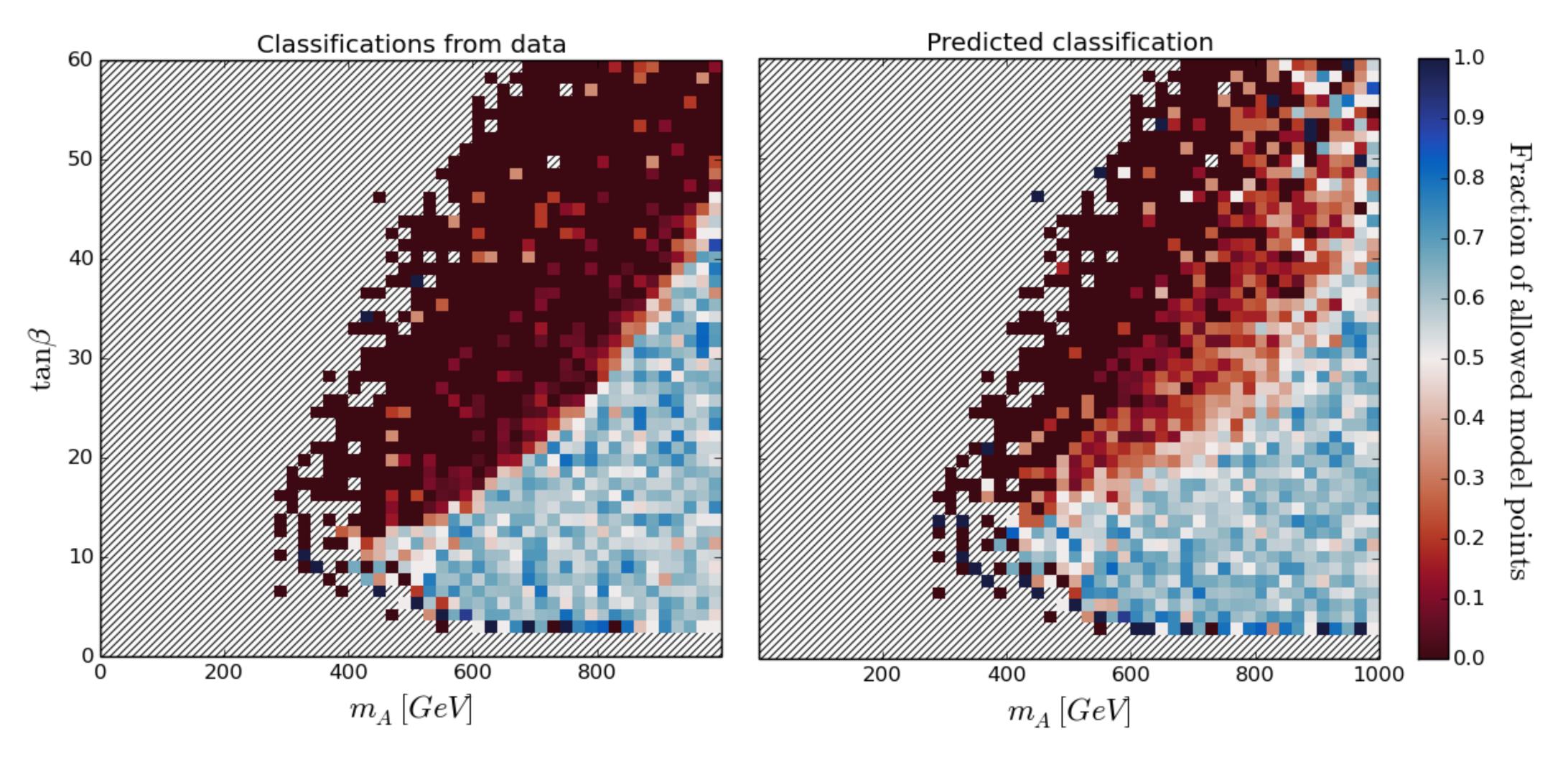
93.2% accuracy @ 8TeV



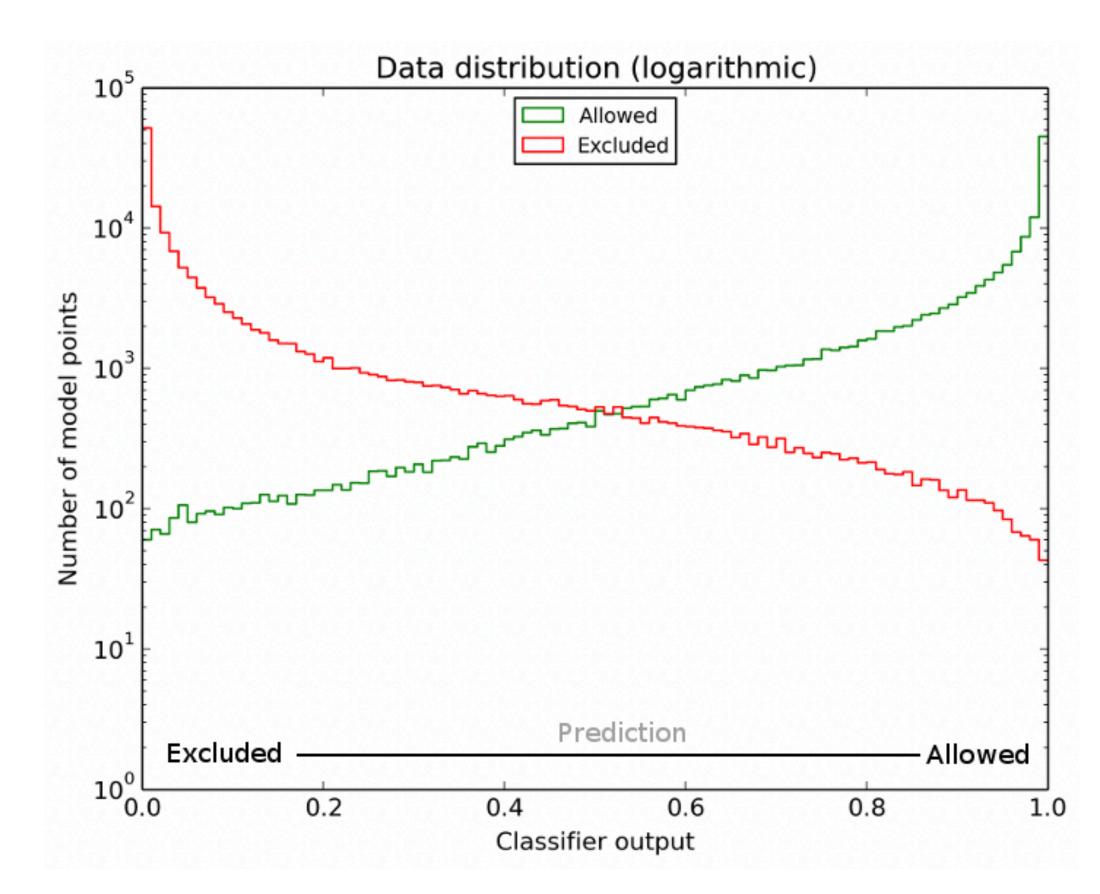


Performance mA vs tan(beta)

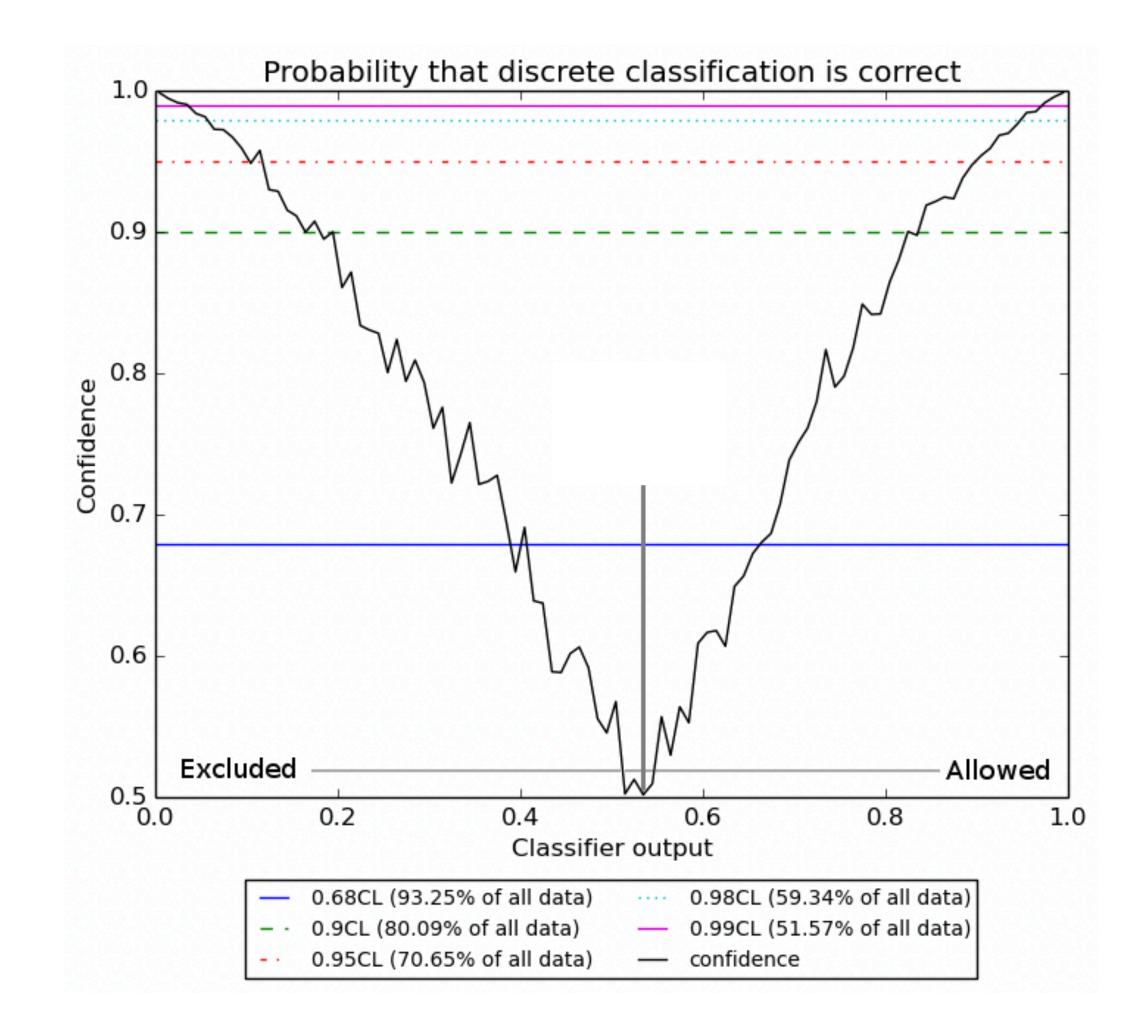
93.2% accuracy @ 8TeV



Confidence

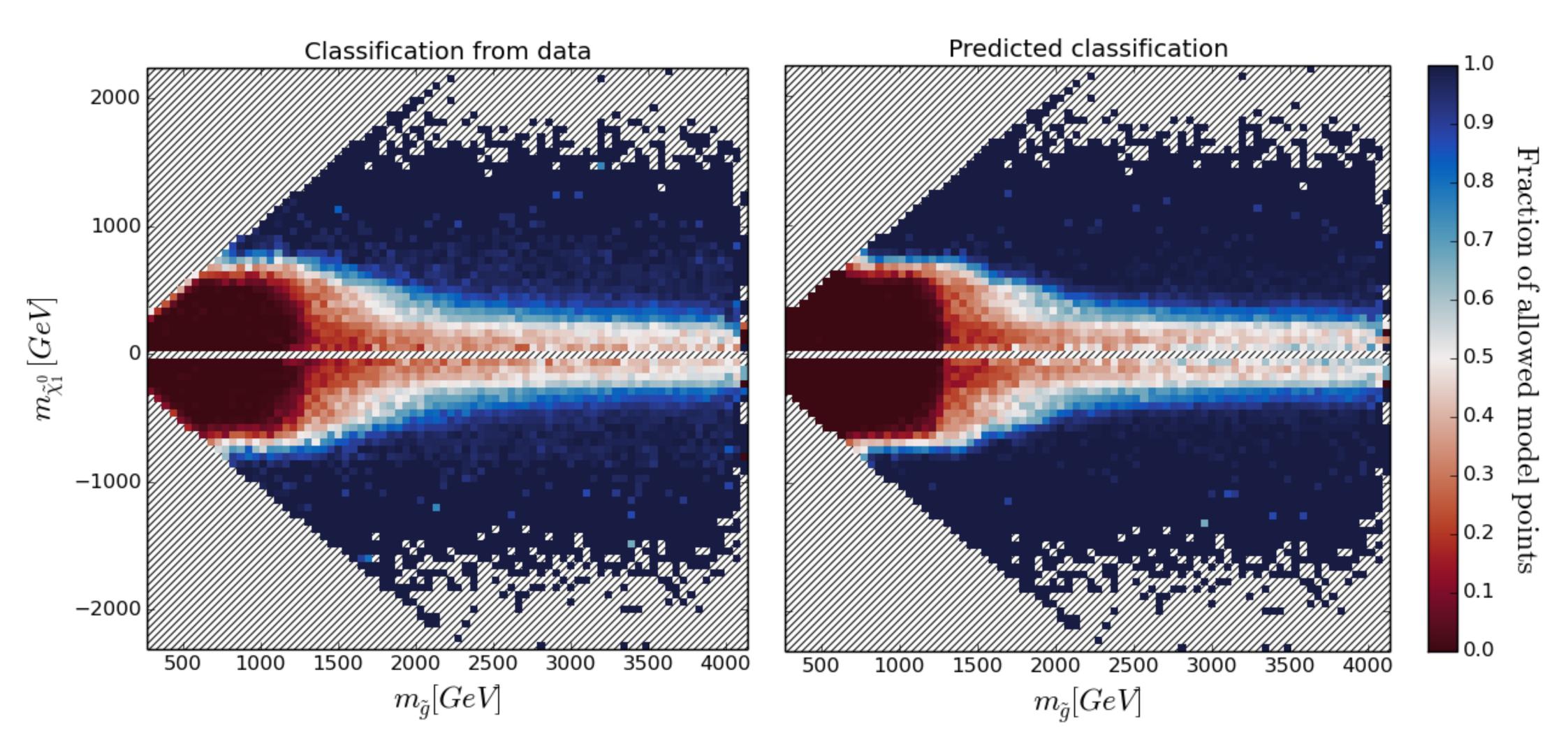


- Allows for requiring minimum degree of confidence



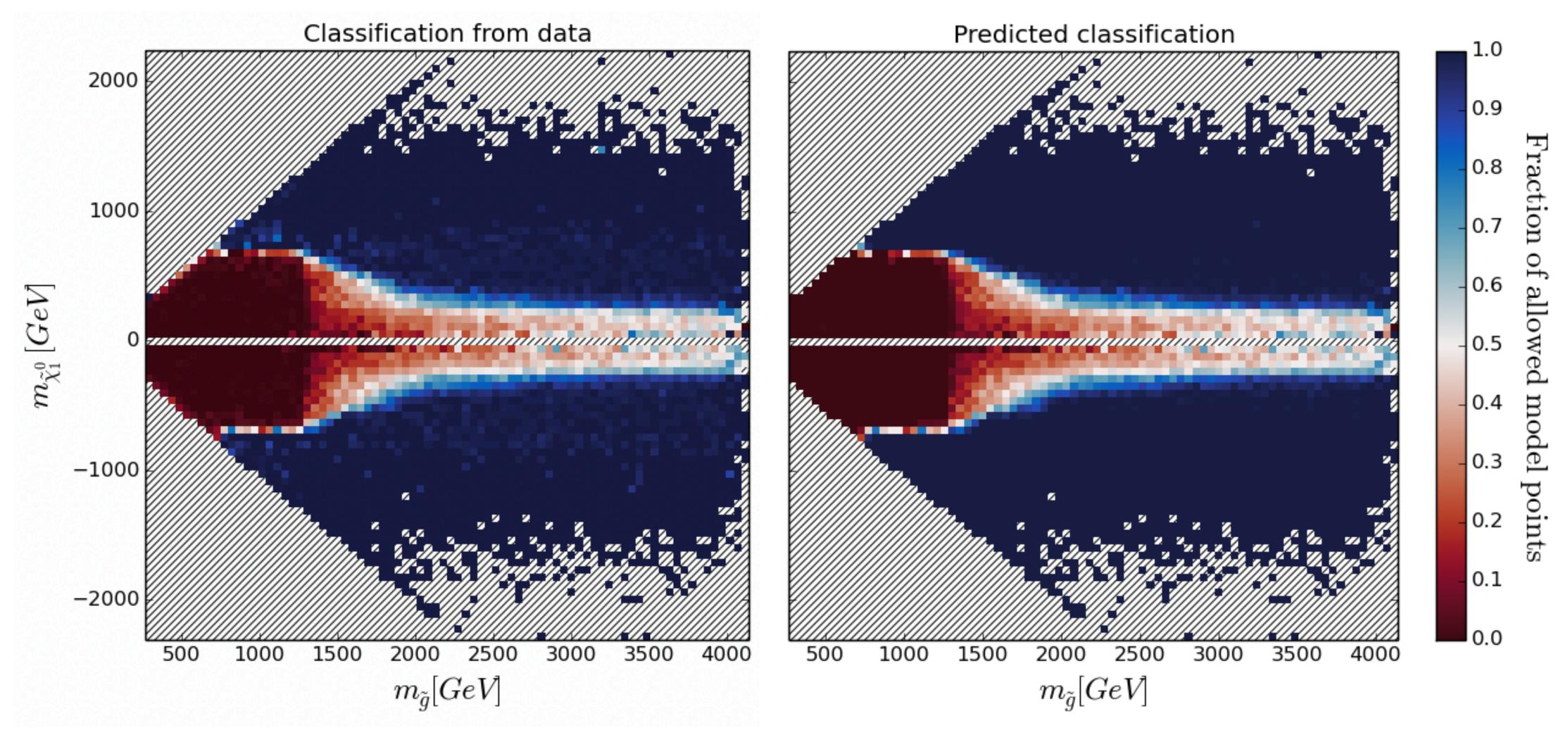
Performance gluino vs neutralino1

93.2% accuracy @ 8TeV



Confidence (>95%) gluino vs neutralino1

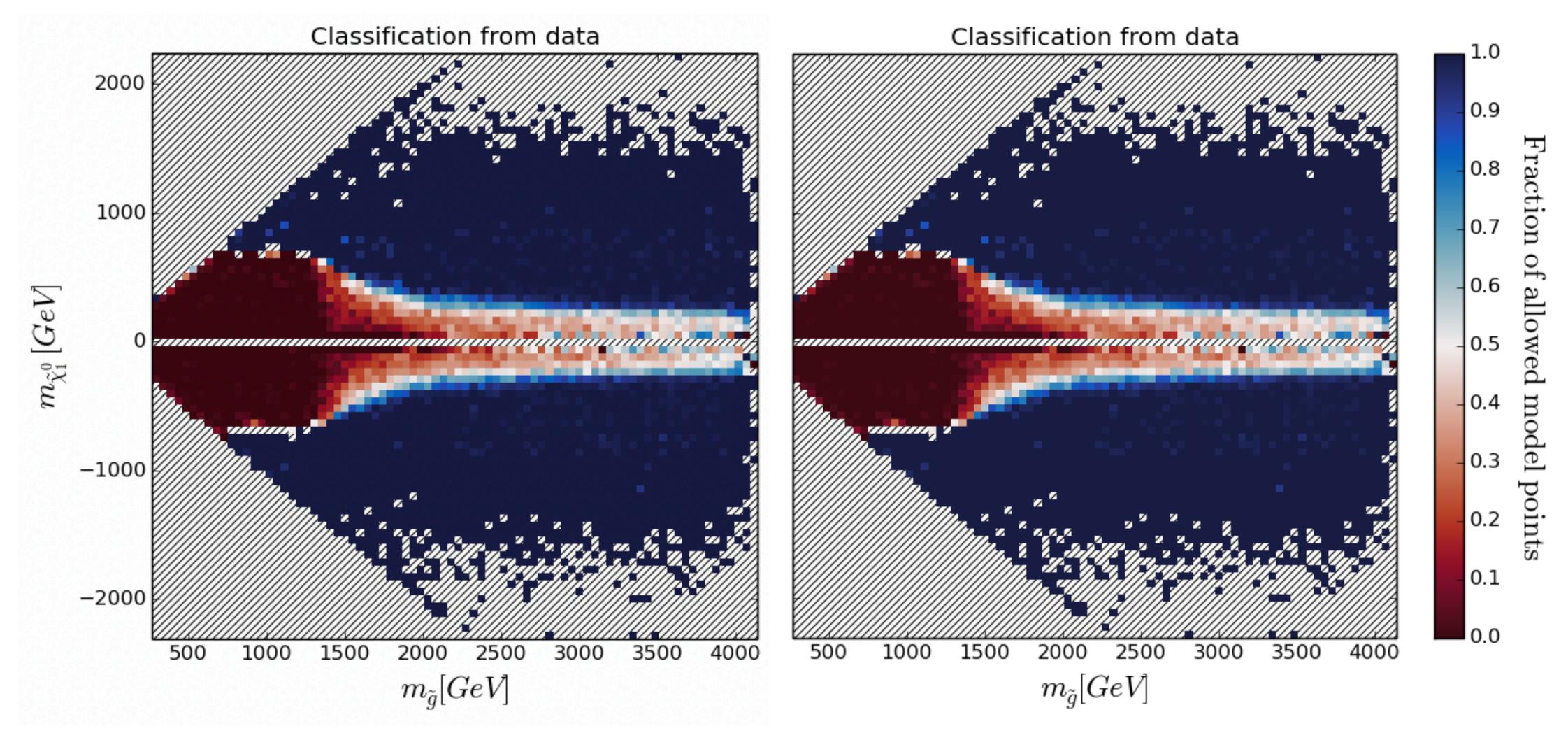
99.1% accuracy on 70.6% of total data @ 8TeV



99.0% accuracy on 68.0% of total data @ 13 TeV

Confidence (>99%) gluino vs neutralino1

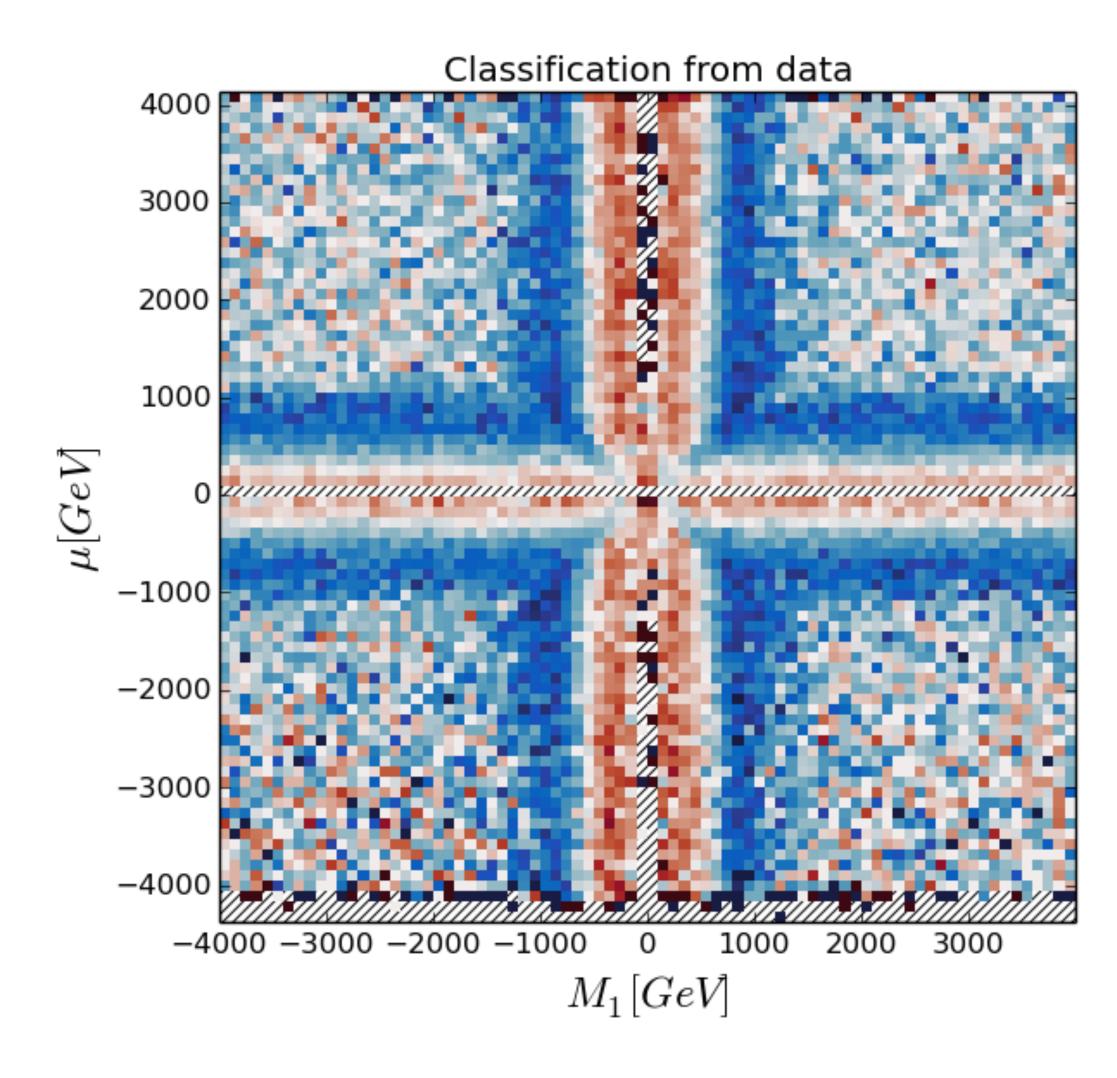
99.7% accuracy on 51.6% of total data @ 8TeV

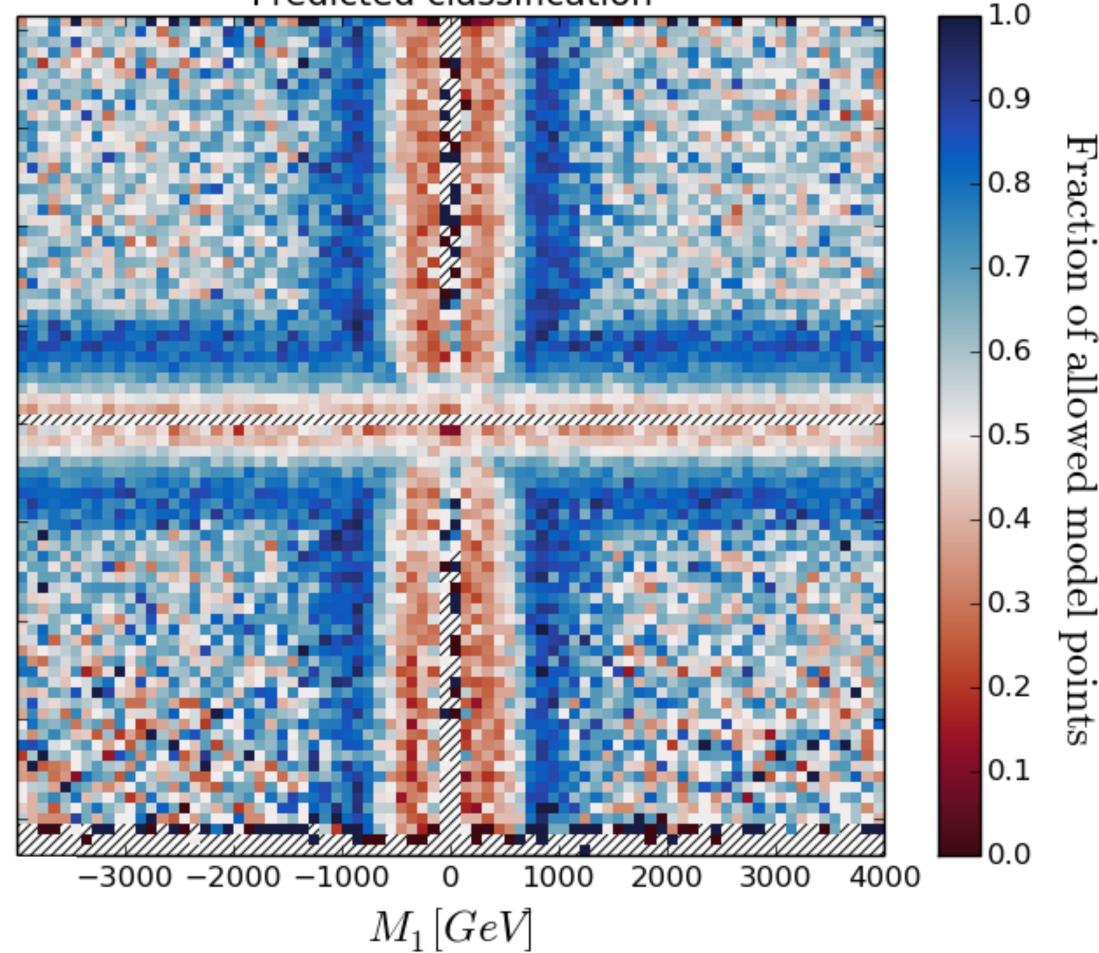


99.7% accuracy on 47.6% of total data @ 13 TeV

Performance M1 vs mu

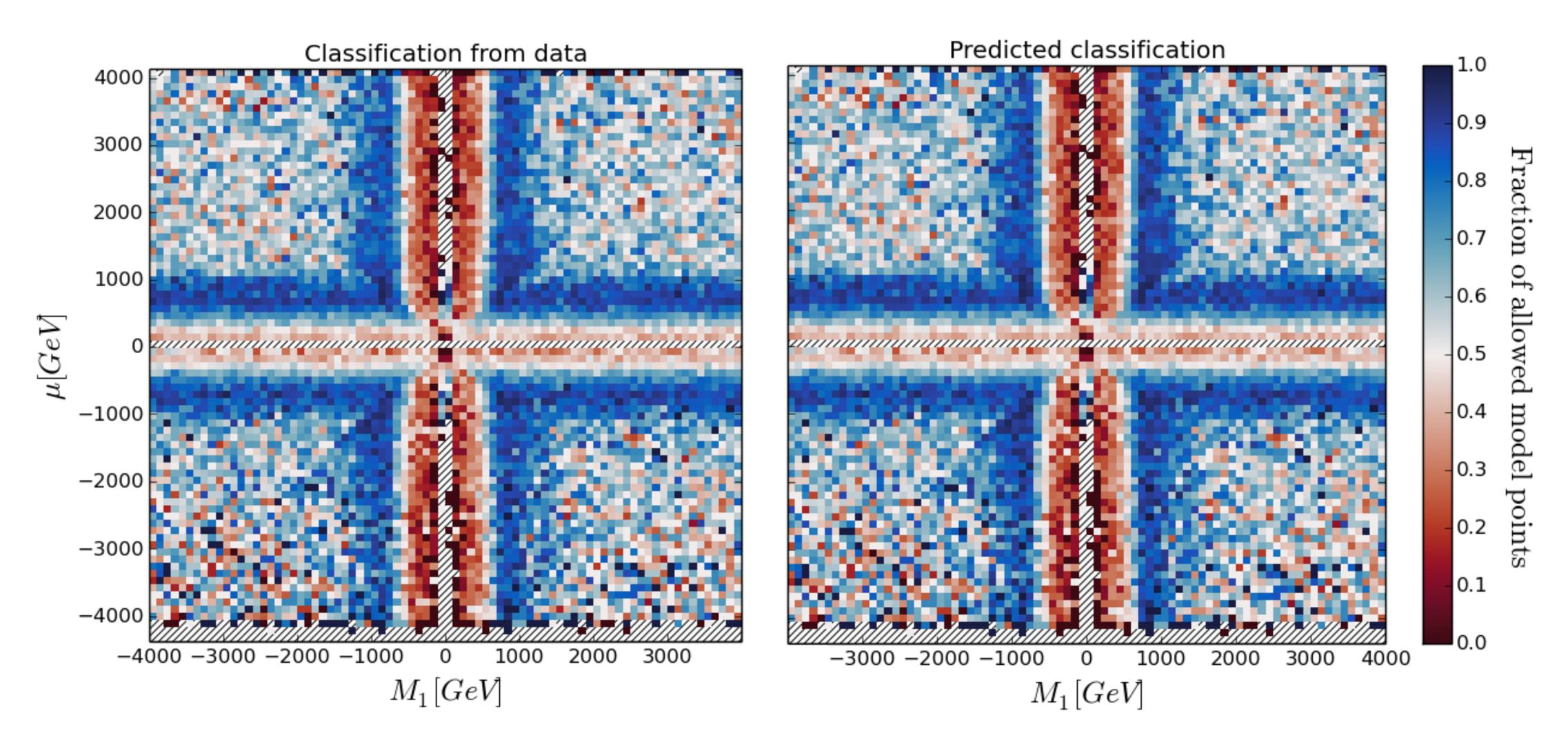
93.2% accuracy @ 8TeV





Confidence (>95%) M1 vs mu

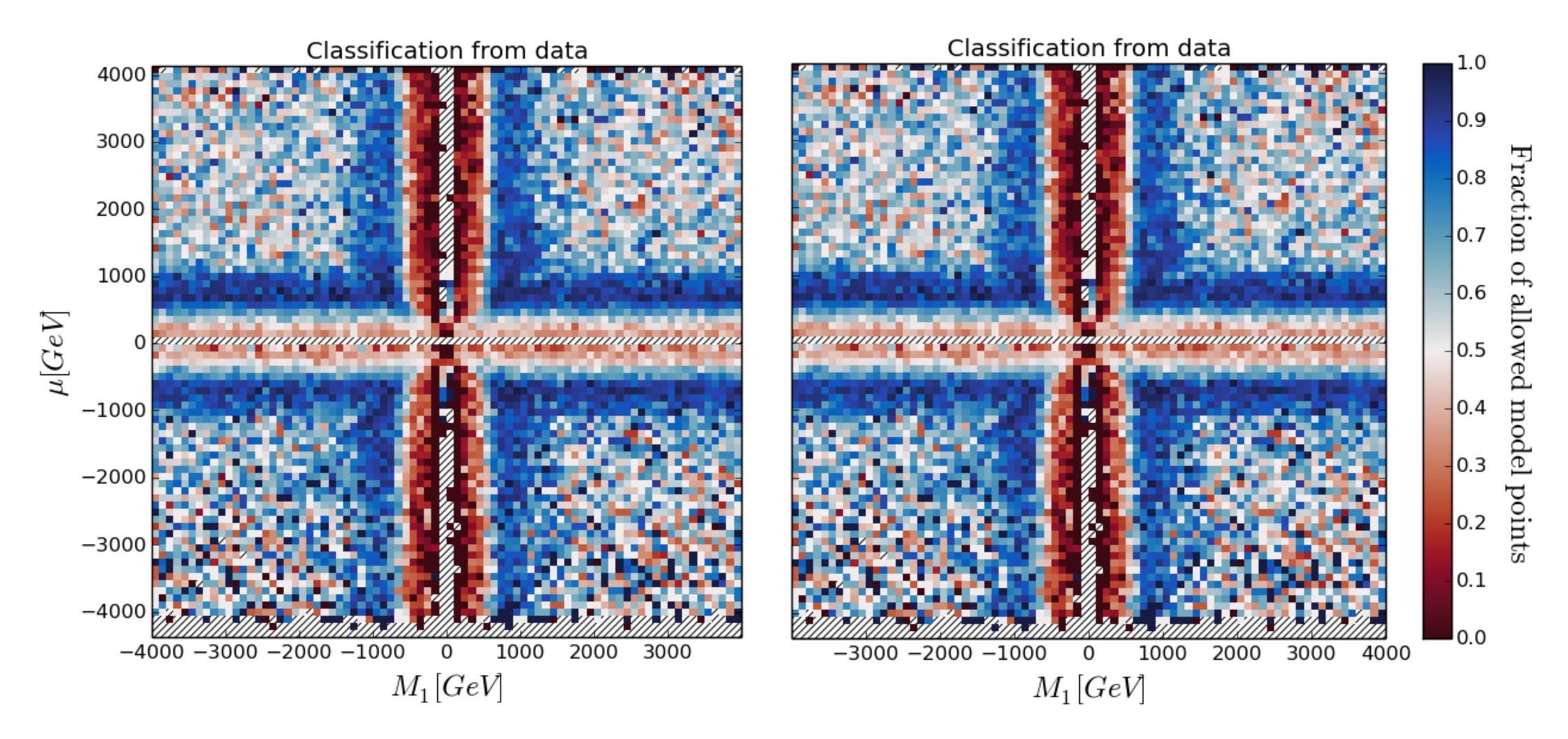
99.1% accuracy on 70.6% of total data @ 8TeV



99.0% accuracy on 68.0% of total data @ 13 TeV

Confidence (>99%) M1 vs mu

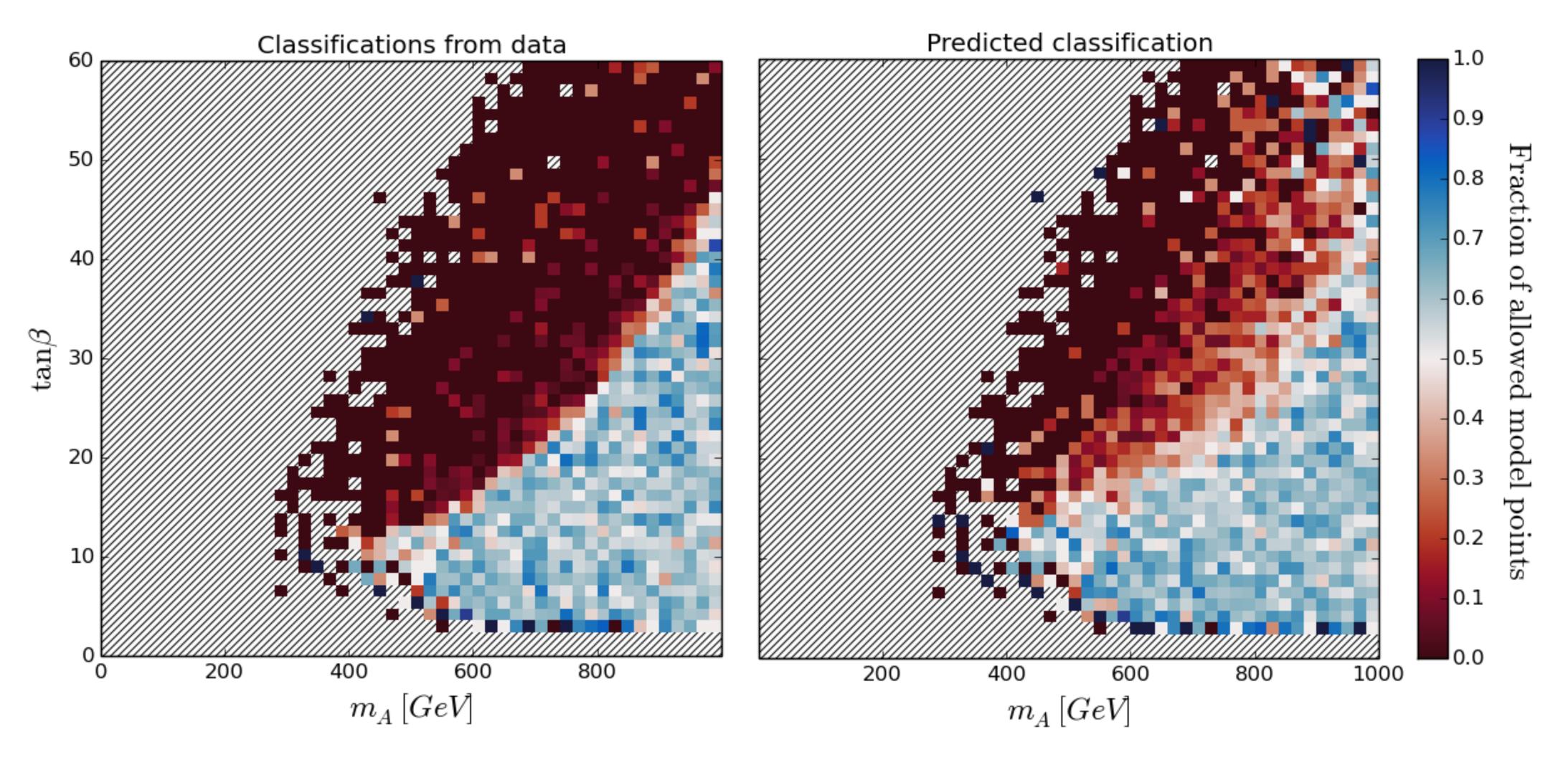
99.7% accuracy on 51.6% of total data @ 8TeV



99.7% accuracy on 47.6% of total data @ 13 TeV

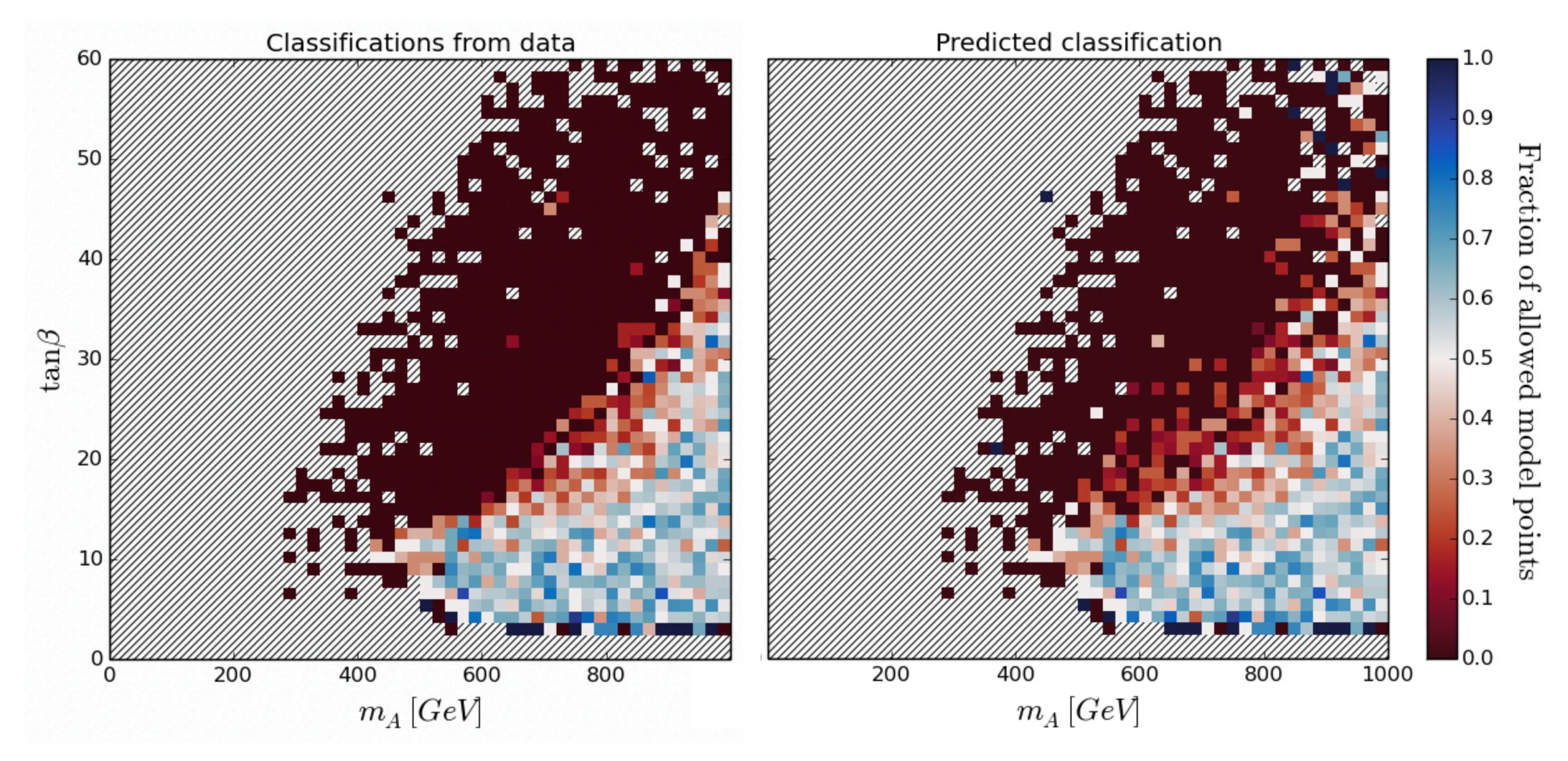
Performance mA vs tan(beta)

93.2% accuracy @ 8TeV



Confidence (>95%) mA vs tan(beta)

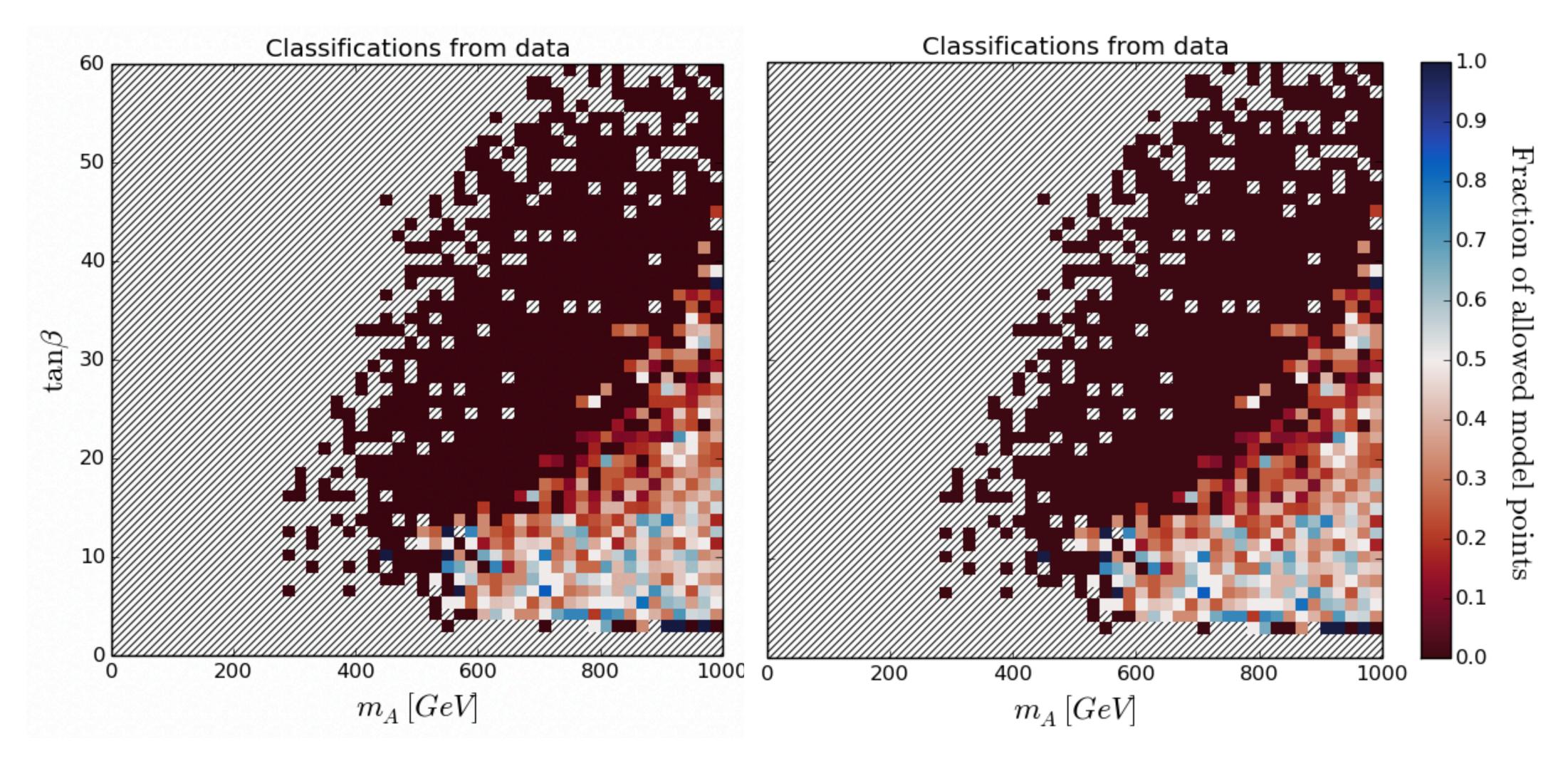
99.1% accuracy on 70.6% of total data @ 8TeV



99.0% accuracy on 68.0% of total data @ 13 TeV

Confidence (>99%) mA vs tan(beta)

99.7% accuracy on 51.6% of total data @ 8TeV



99.7% accuracy on 47.6% of total data @ 13 TeV

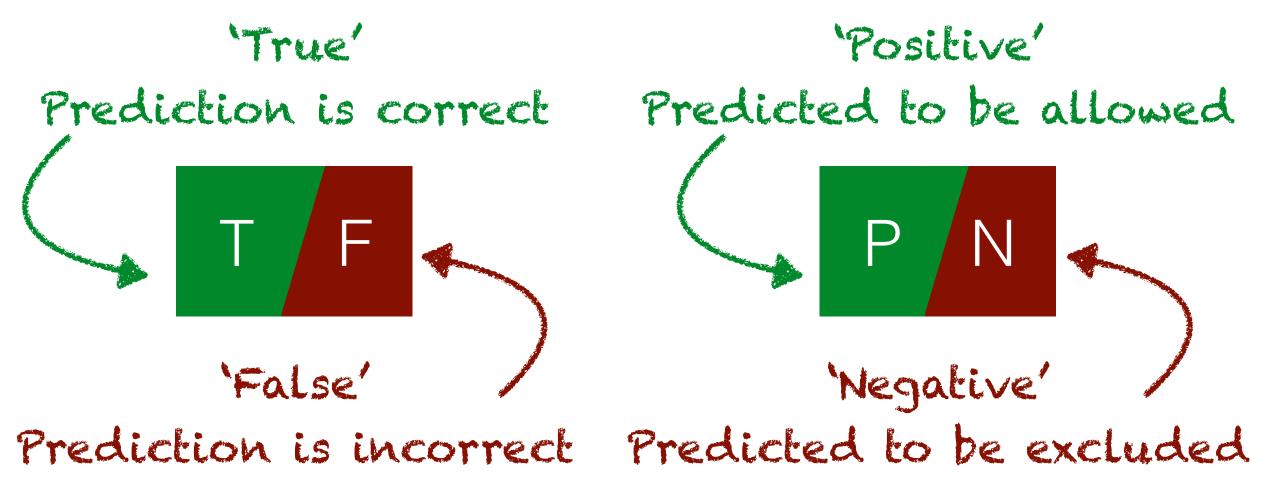
Out-of-bag vs train:test split

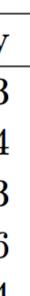
Accuracy	Out-of-bag								
Accuracy:	CL	#	# / total	Accuracy	Precision	Sensitivity	NPV	Specificity	
(TP+TN) / all	0.0	310324	1.0000	0.93226	0.93951	0.94665	0.92152	0.91133	
	0.68	289371	0.93248	0.95735	0.96072	0.96835	0.95222	0.94094	
	0.95	219233	0.70646	0.99094	0.99092	0.99426	0.99096	0.98573	
Precision:	0.98	184230	0.59367	0.99543	0.99573	0.99672	0.99496	0.99346	
TP / (TP+FP)	0.99	160034	0.51570	0.99708	0.99747	0.99764	0.99649	0.99624	

Sensitivity TP / (TP + FN)

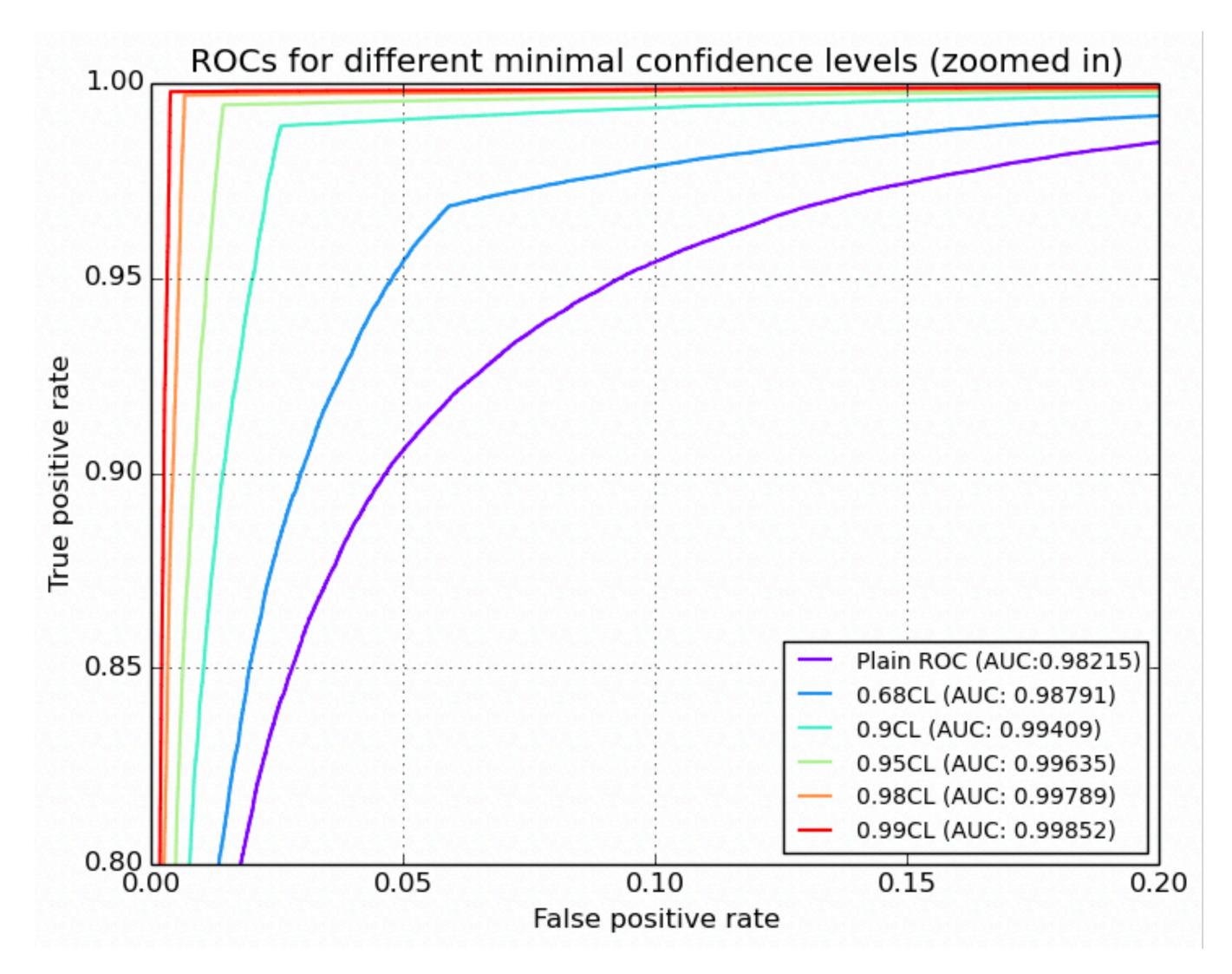
Negative prediction value TN / (TN+FN)

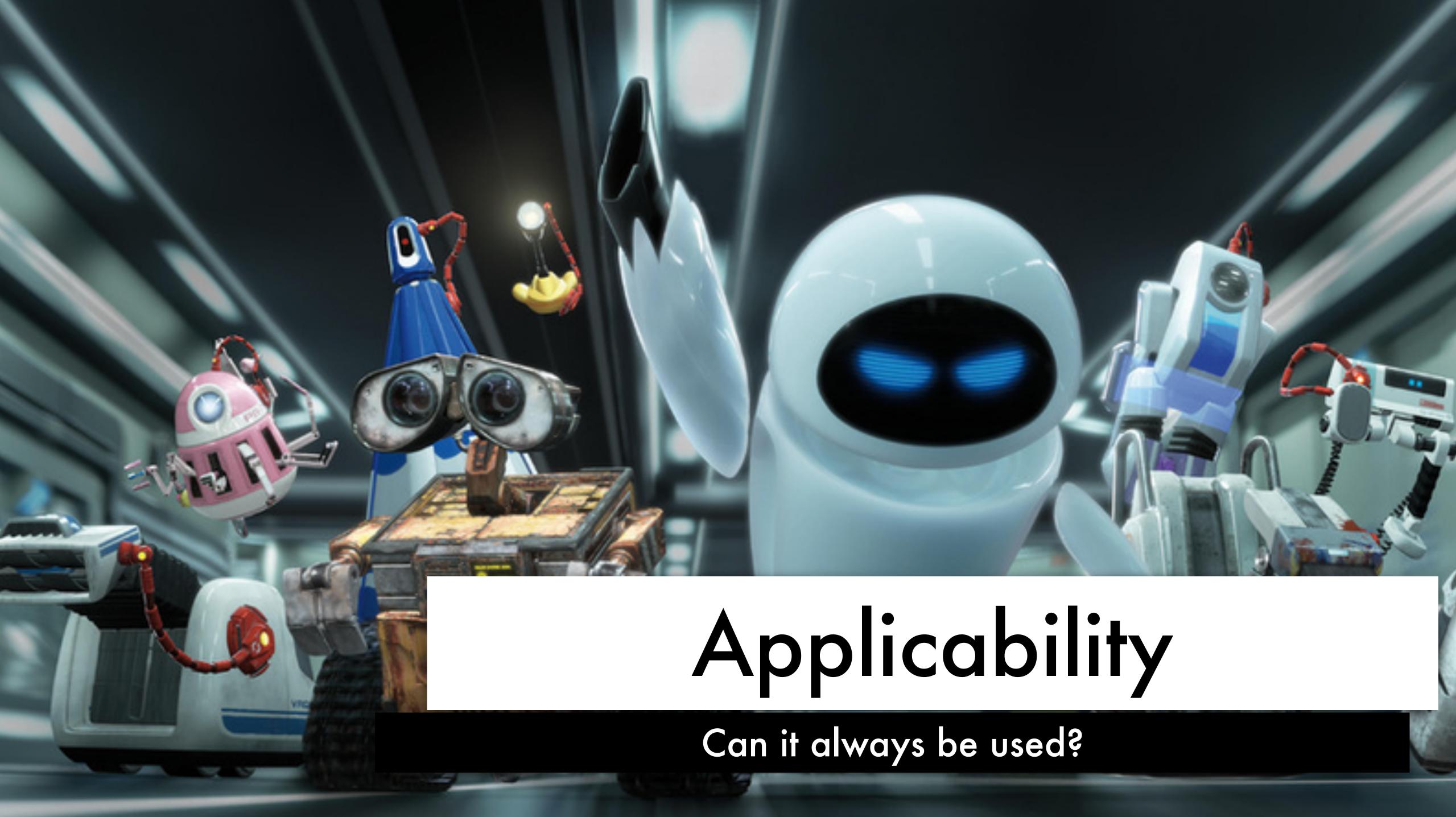
Specificity TN / (TN + FP)



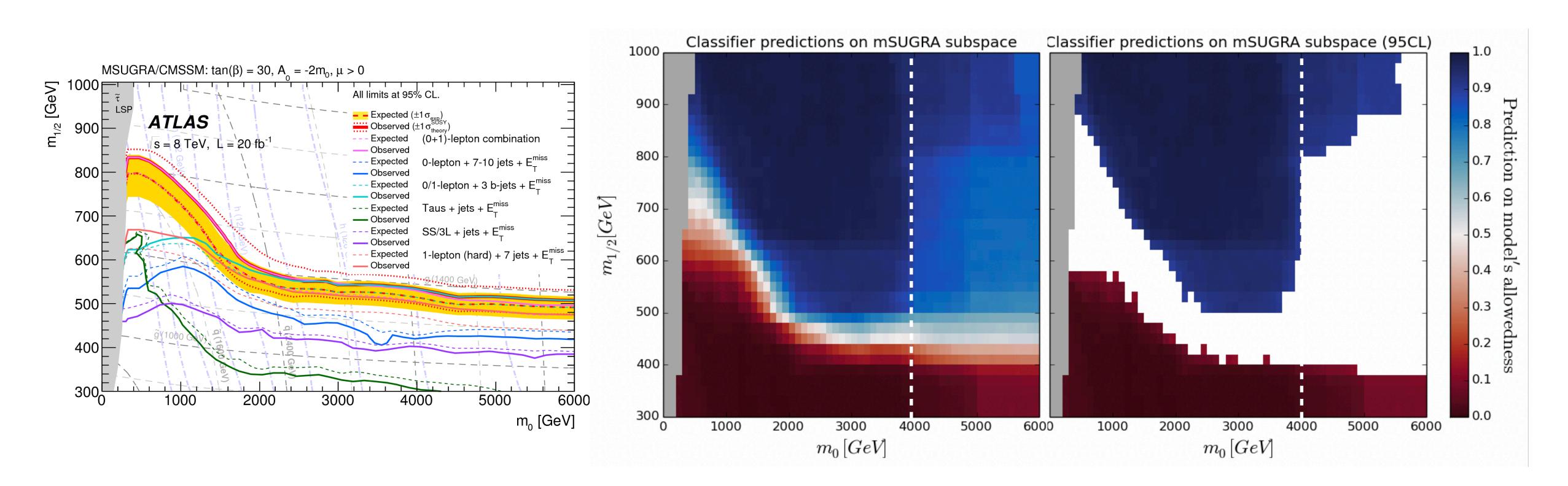


ROC curve

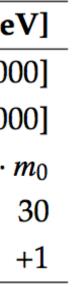




mSUGRA



Parameter	Description	Scanned range [Ge]
m_0	Sbosonic particle masses	[0, 600
$m_{1/2}$	Sfermionic particle masses	[300, 100
A_0	Coupling proportionality constant	2 · 1
tan β	Ratio of vacuum expectation values of H_u^0 and H_d^0	
$sign(\mu)$	Sign of the higgsino mass parameter	-



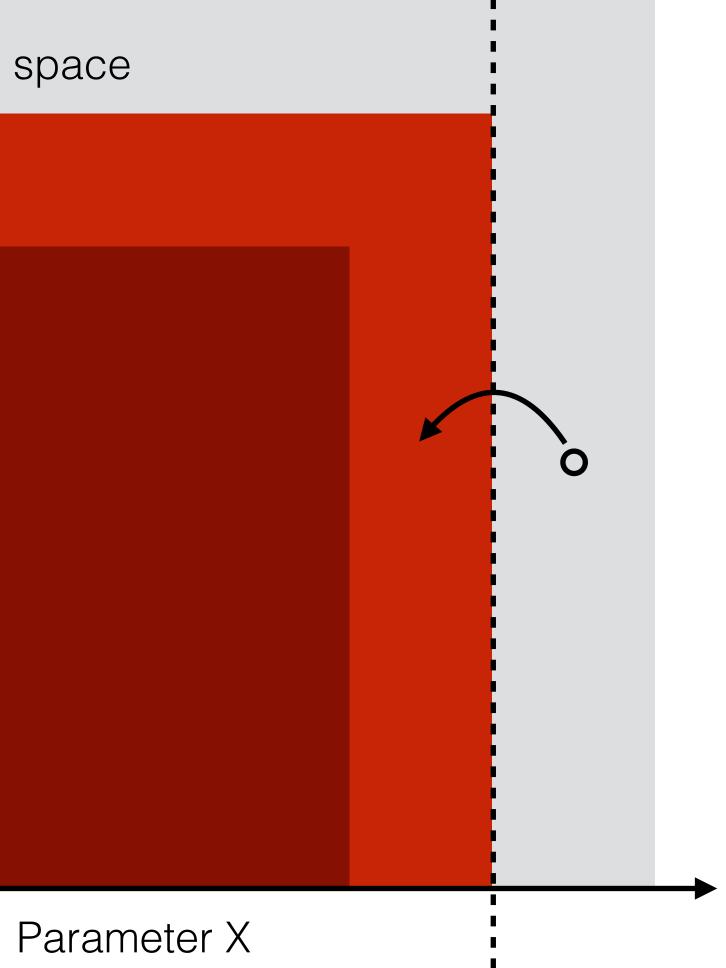
Outlier mapping

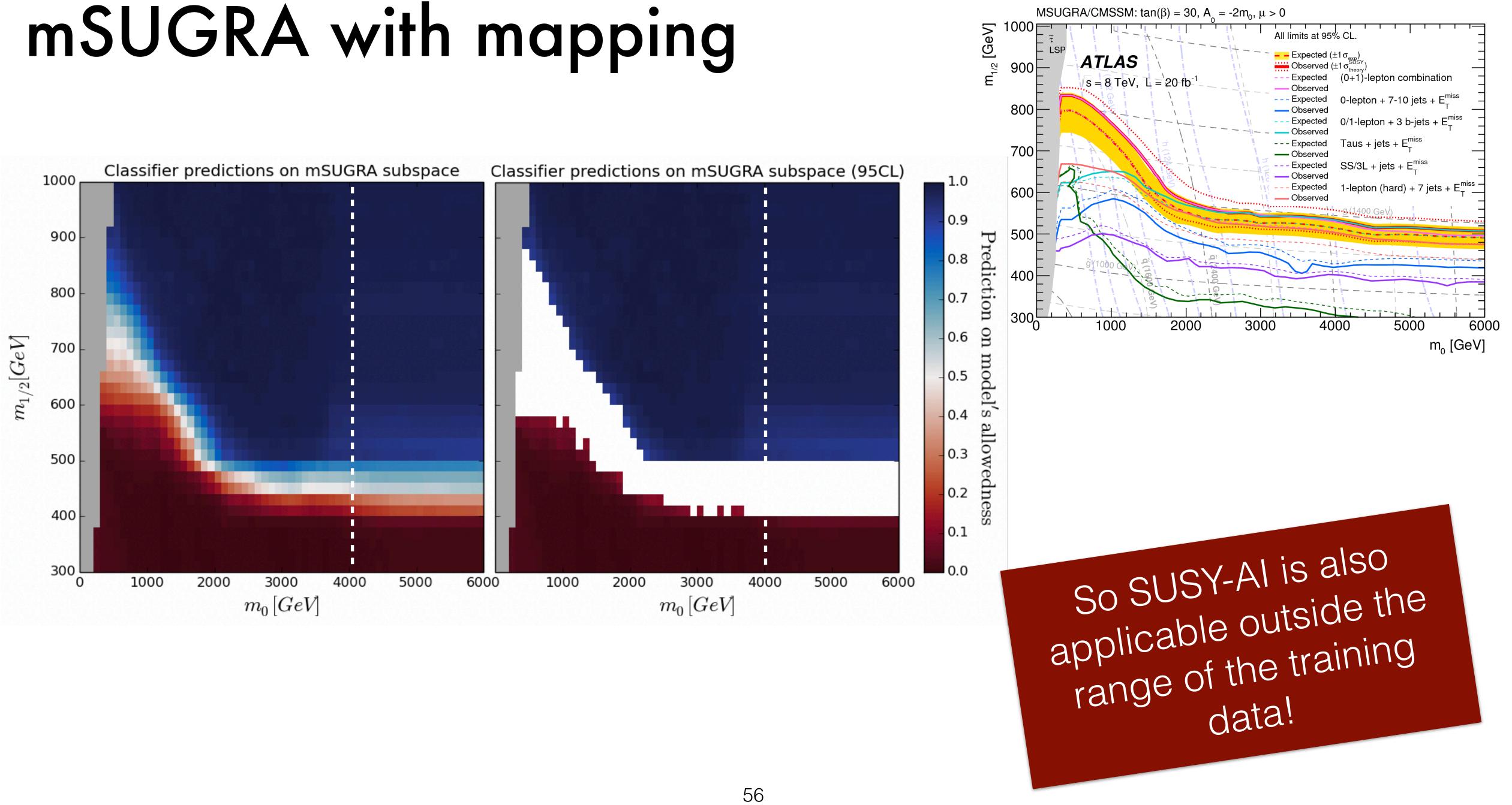
Parameter Y

Sampled parameter space

Training data

Search sensitivity





Other contexts

- Zoomed in parts of pMSSM
- CMS Analyses
- Exclusion based on other experiments (Xenon100, IceCube etc.)
- Higgs likelihood based on kappa values
- Dark Matter models

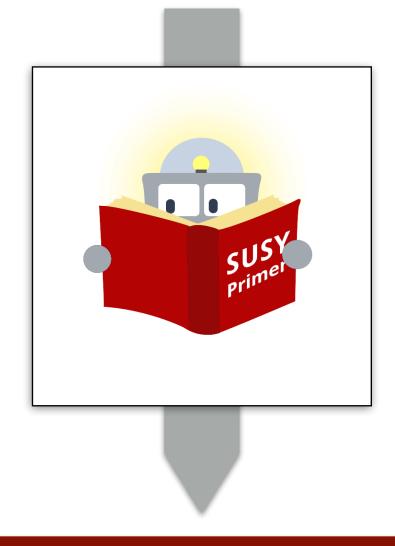
SUSY-AI

- Algorithms (both 8TeV and 13TeV) are publicly available at http://susyai.hepforge.org

```
from susyai import susyai
import numpy as np
sa = susyai("susyai_classifier_python_v3.pkl")
data = np.array([30, 4.0276e2, 7.3196e2, 2.1862e3, 1.0,
          4.0713e3, 4.4890e3, 4.4752e3, 4.4743e3, 2.8806e3,
          3.7855e3, 1.3240e3, 2.9076e3, 4.2226e3, 4.2056e3,
          3.4290e3, 3.8608e3, -4.3154e3, -8.1538e3, -7.3680e3])
clas, pred, cert = sa.predict(data)
```

- Up to 5,000 model point predictions per second / CPU

Modelpoint



excluded / allowed

SUSY-Al online

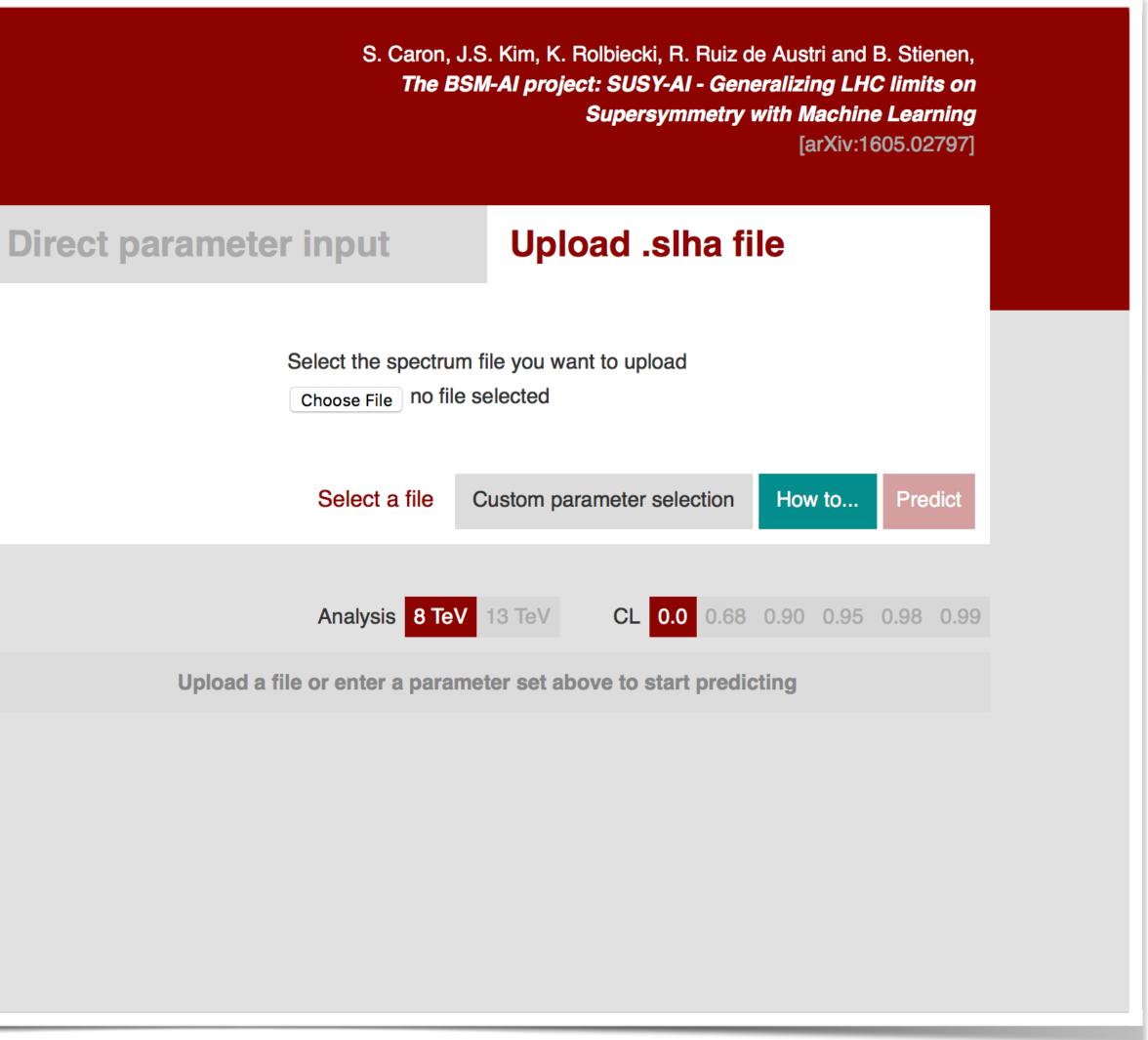
SUSY-AI Online SUSY-AI VERSION 2.2.1

SUSY-AI is a machine learning tool that is able to provide in a fraction of a second the exclusion of a pMSSM (sub)model point. This website provides a simple online interface for quick determination of exclusion of a model point using the results of ATLAS Run-I (8TeV) and ATLAS Run-II (13TeV). The papers associated with this data can be found here.

The full version of SUSY-AI is faster and can provide predicions for multiple modelpoints at the same time. It is under continuing active development and can be downloaded from the hepforge project page.

Download SUSY-AI

If you use SUSY-AI in your scientific



Conclusion

- away!)
- have data!)

SUS prime

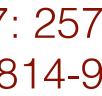
Eur. Phys. J. C (2017) 77: 257 DOI: 10.1140/epjc/s10052-017-4814-9

- We created a Machine Learning algorithm that can predict model point <u>exclusion</u> in a <u>fraction of a second</u>

- Website is online and algorithm is publicly available (you can start applying LHC limits to your data right

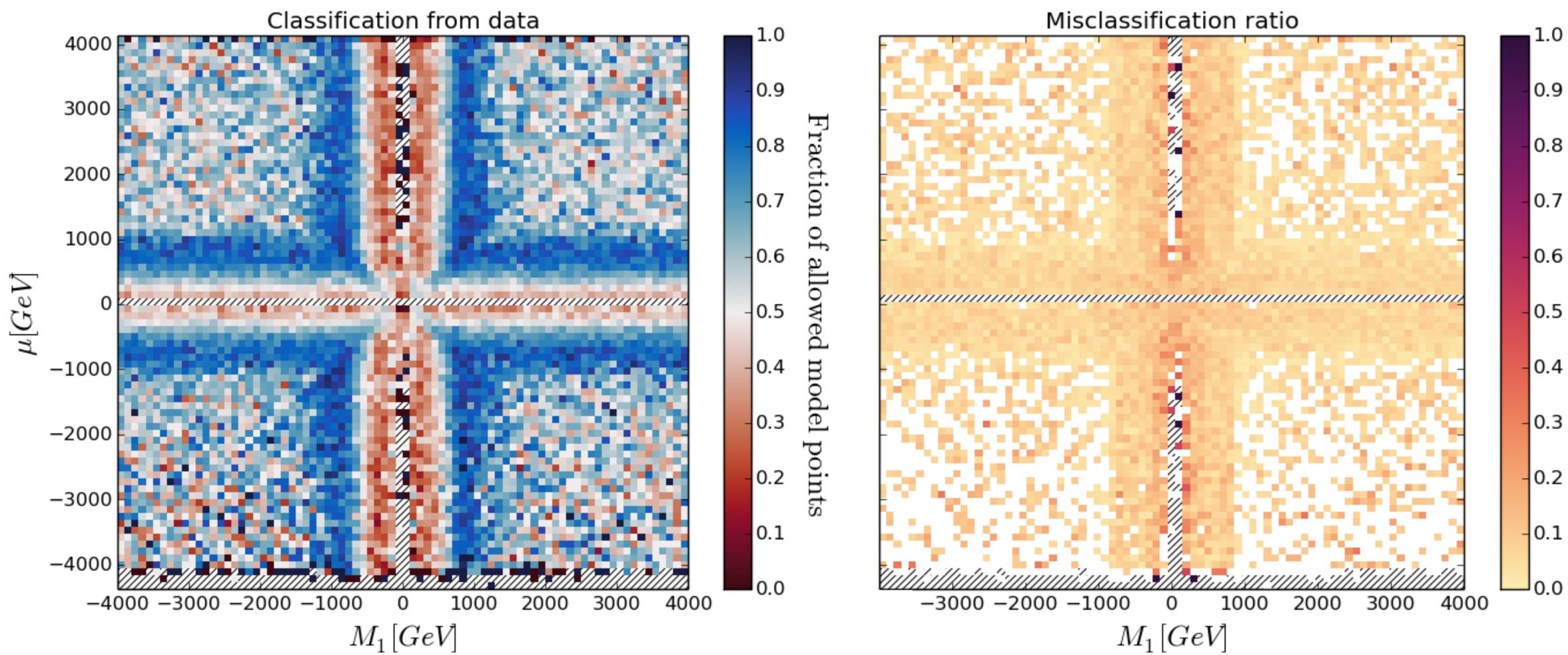
It works within the general pMSSM, but method is not limited to this parameter space (let me know if you

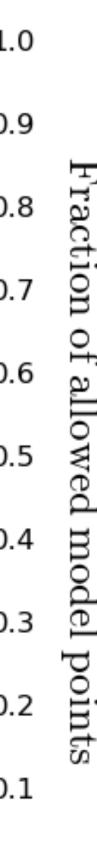
Algorithm can be stored: method can be used to <u>communicate multivariate results and analyses</u>



Performance M1 vs mu

93.2% accuracy @ 8TeV

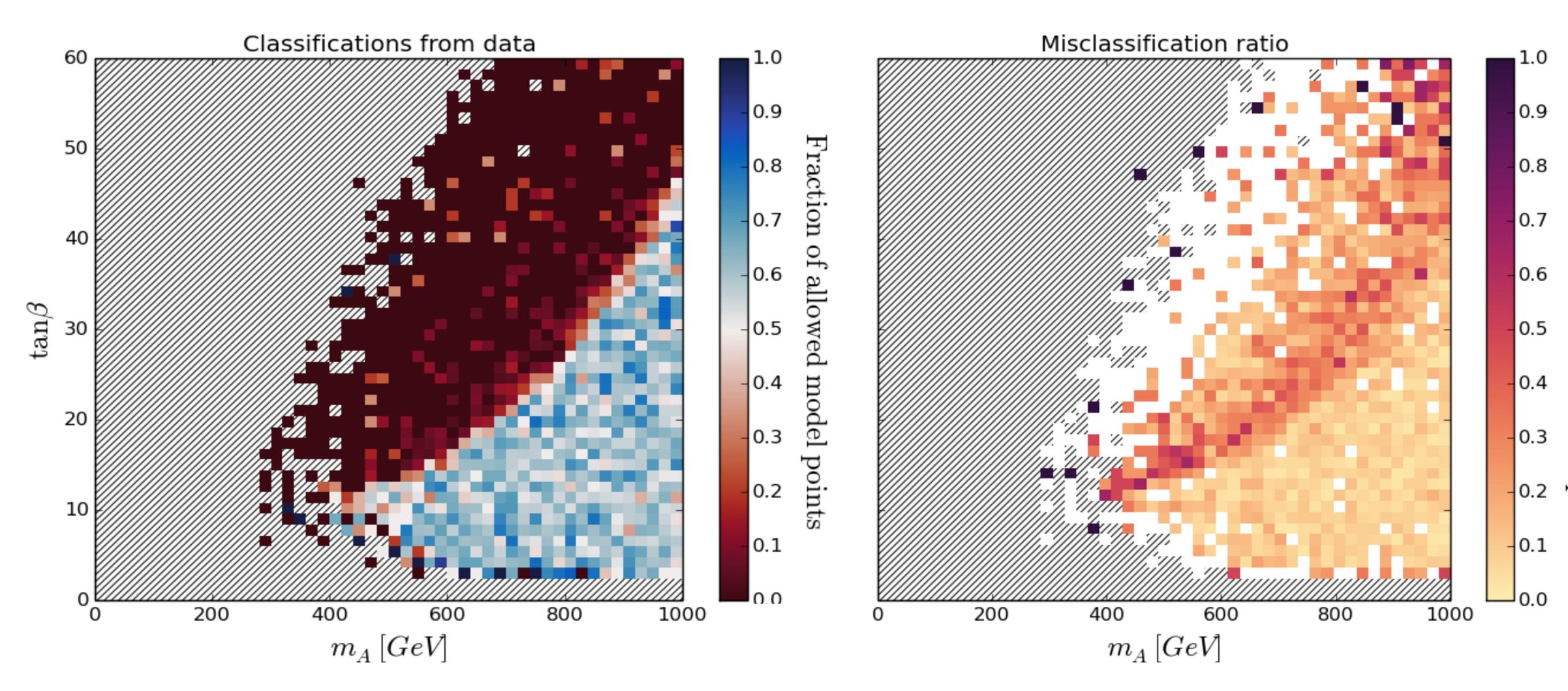




Performance mA vs tan(beta)

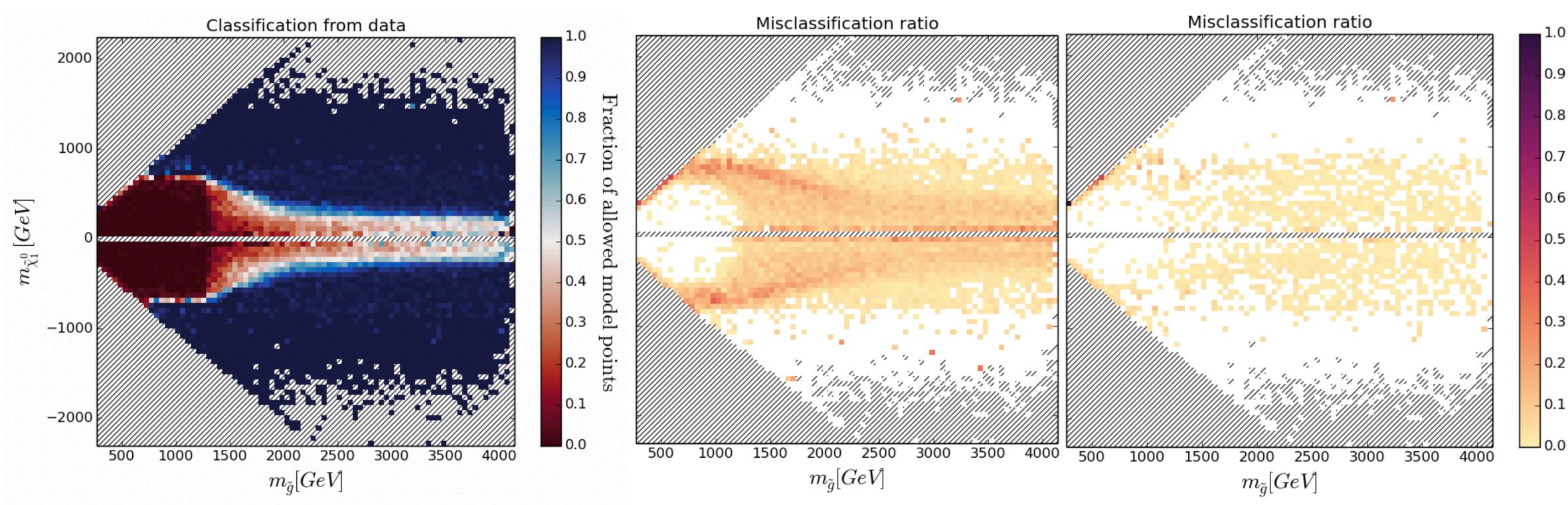
93.2% accuracy @ 8TeV

92.7% accuracy @ 13 TeV

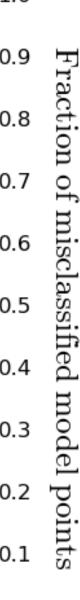


Confidence (>95%) gluino vs neutralino1

99.1% accuracy on 70.6% of total data @ 8TeV

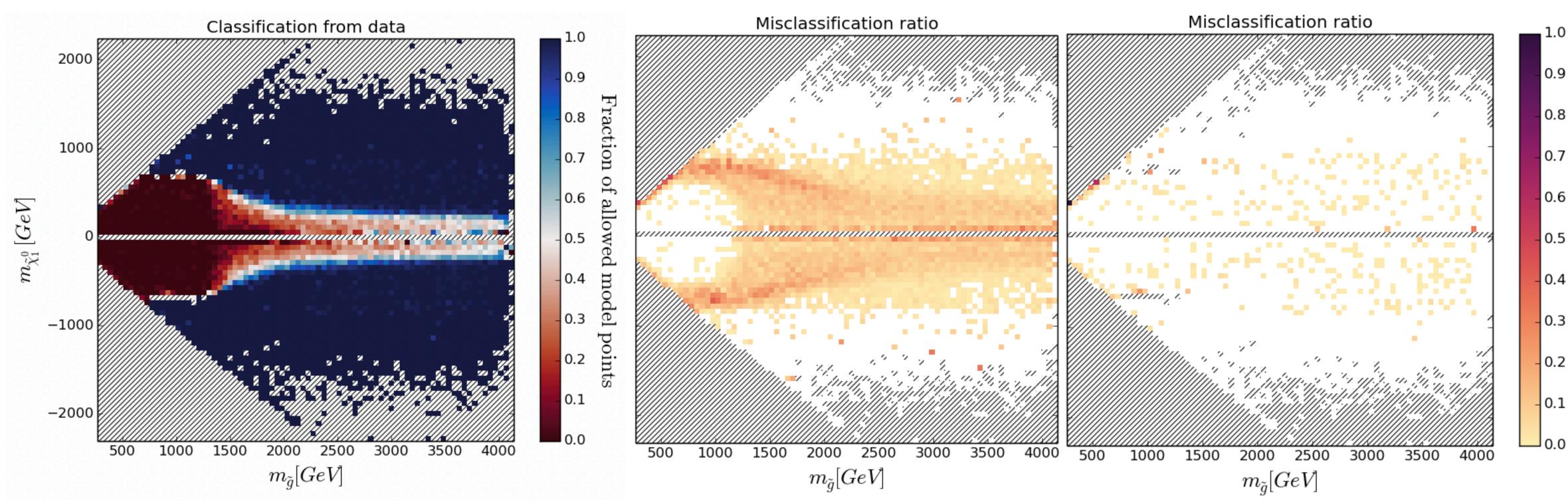


99.0% accuracy on 68.0% of total data @ 13 TeV

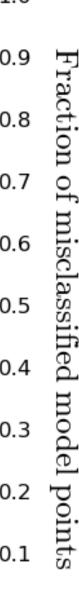


Confidence (>99%) gluino vs neutralino1

99.7% accuracy on 51.6% of total data @ 8TeV

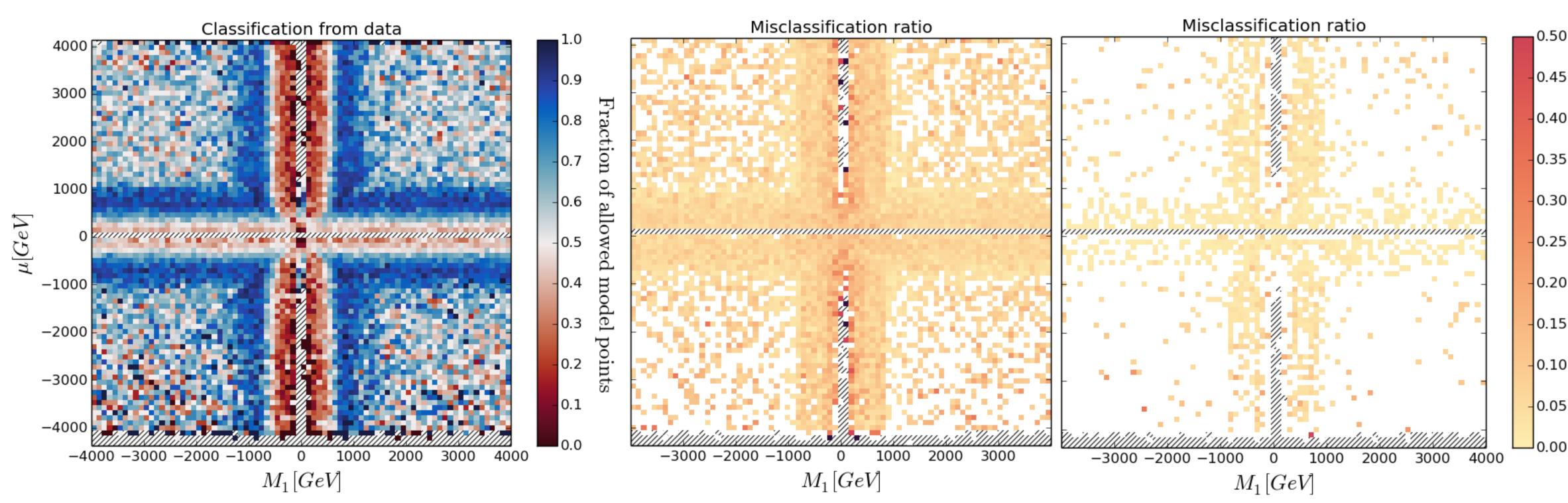


99.7% accuracy on 47.6% of total data @ 13 TeV

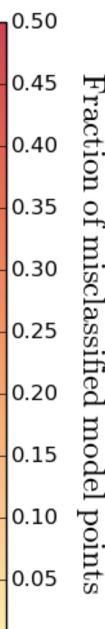


Confidence (>95%) M1 vs mu

99.1% accuracy on 70.6% of total data @ 8TeV



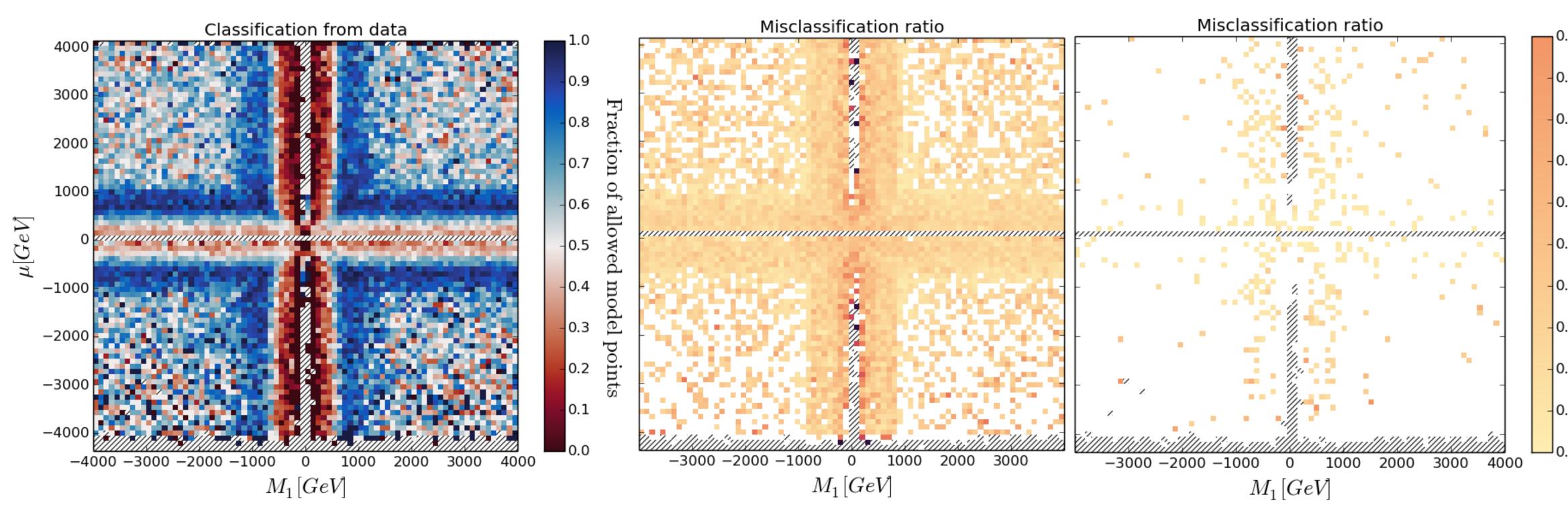
99.0% accuracy on 68.0% of total data @ 13 TeV



Frace
action
of
misc
lassi
fied
model
points

Confidence (>99%) M1 vs mu

99.7% accuracy on 51.6% of total data @ 8TeV

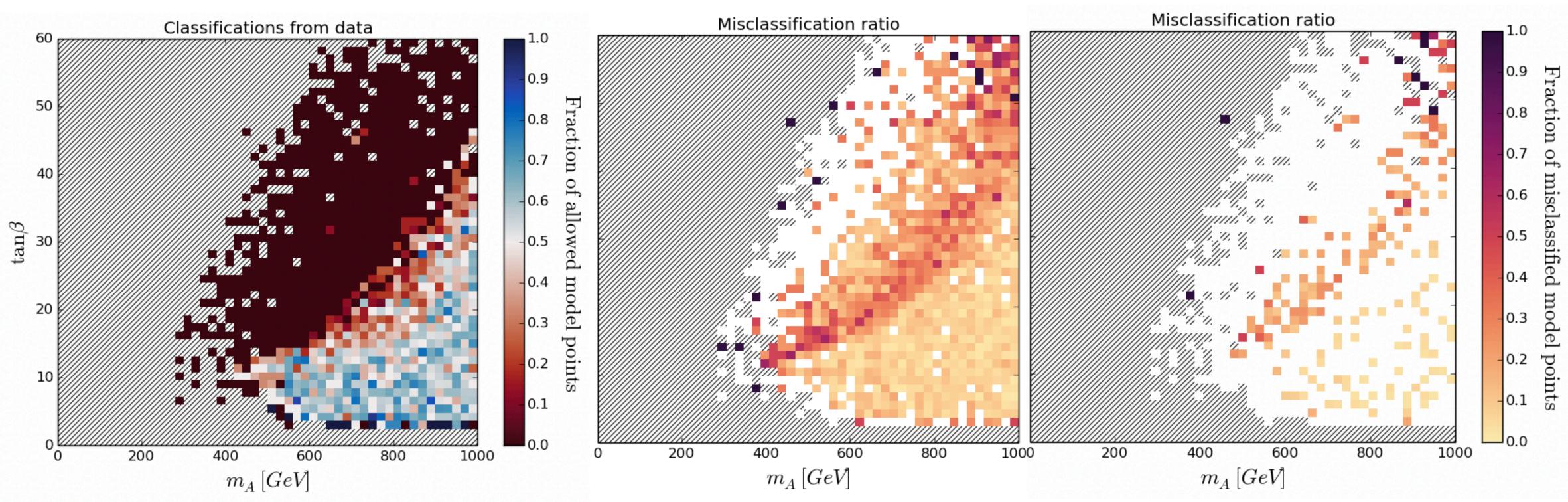


99.7% accuracy on 47.6% of total data @ 13 TeV

250	
225	Η'n
200	actio
175	n of
150	misc
125	lassi
100	fied i
075	Fraction of misclassified model points
050	pd bo
025	ints
000	

Confidence (>95%) mA vs tan(beta)

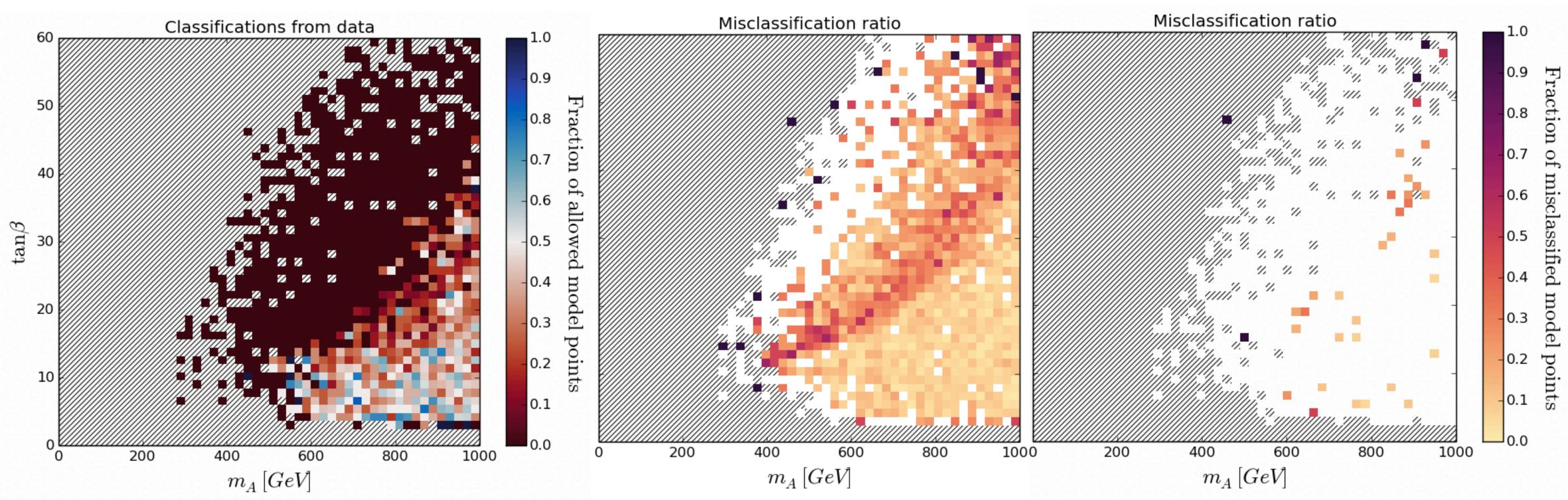
99.1% accuracy on 70.6% of total data @ 8TeV



99.0% accuracy on 68.0% of total data @ 13 TeV

Confidence (>99%) mA vs tan(beta)

99.7% accuracy on 51.6% of total data @ 8TeV



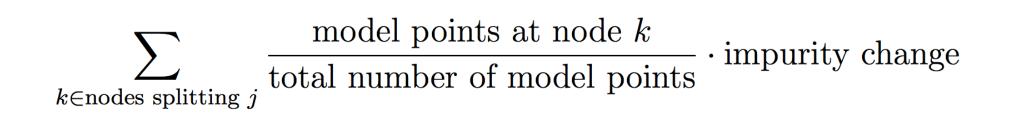
99.7% accuracy on 47.6% of total data @ 13 TeV

Feature importances

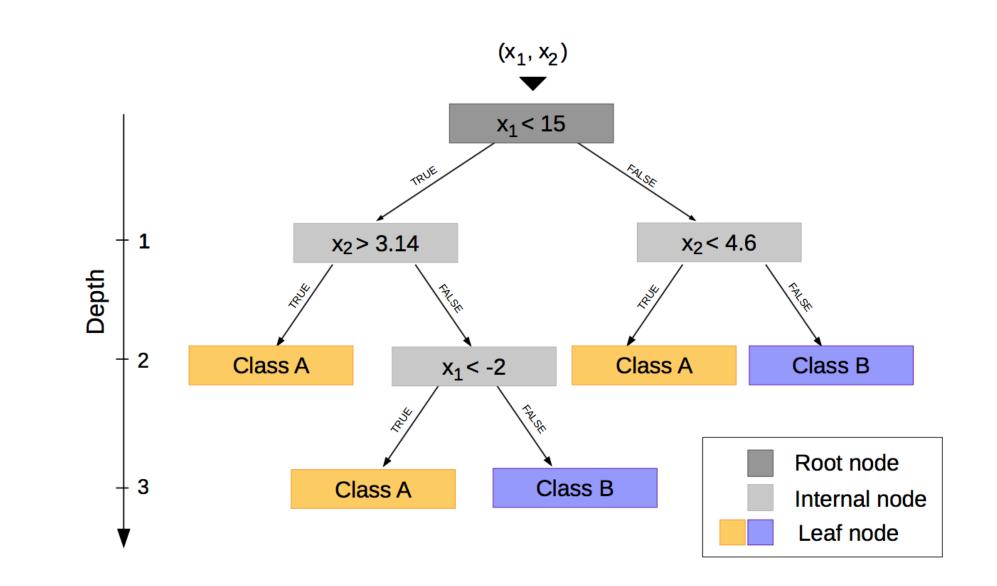
Splits in Decision Trees are made based on Gini impurity

$$I = \sum_{i=1}^{C} f_i \cdot (1 - f_i) = 1 - \sum_{i=1}^{C} f_i^2$$

- Weighted impurity (variable importa per feature can be calculated via:



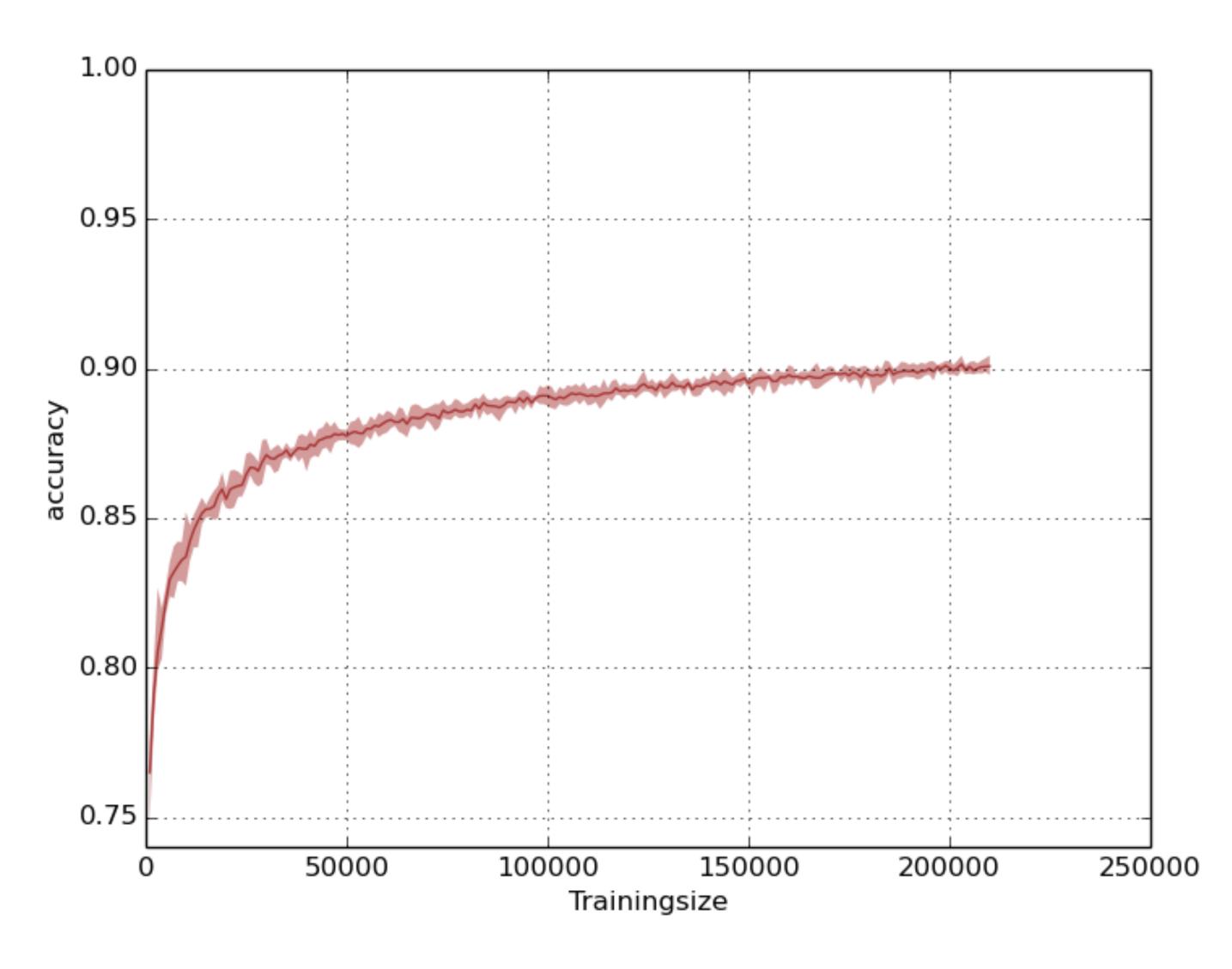
Significant differences in variable importance between features!



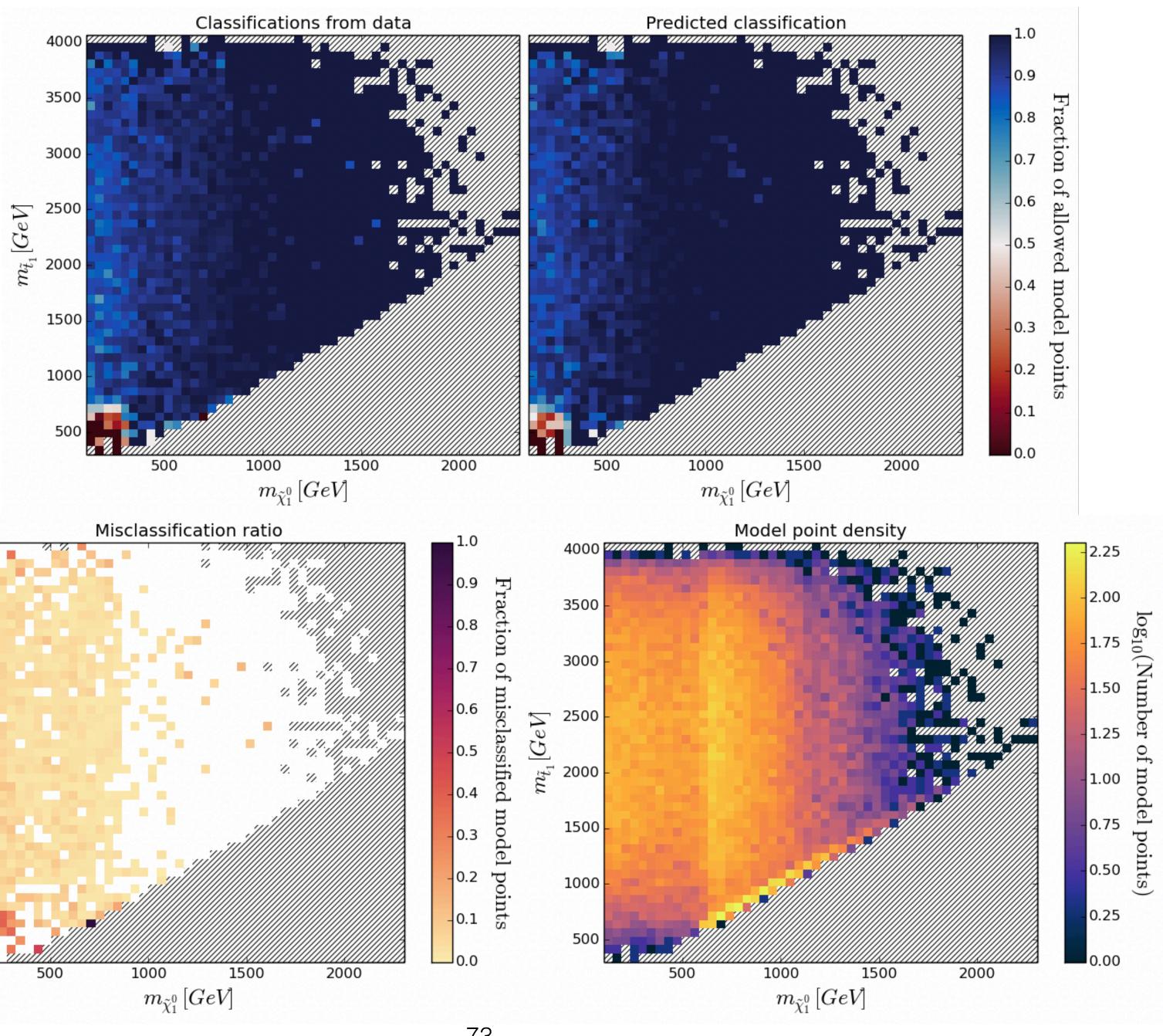
1	n	С	е)
				/

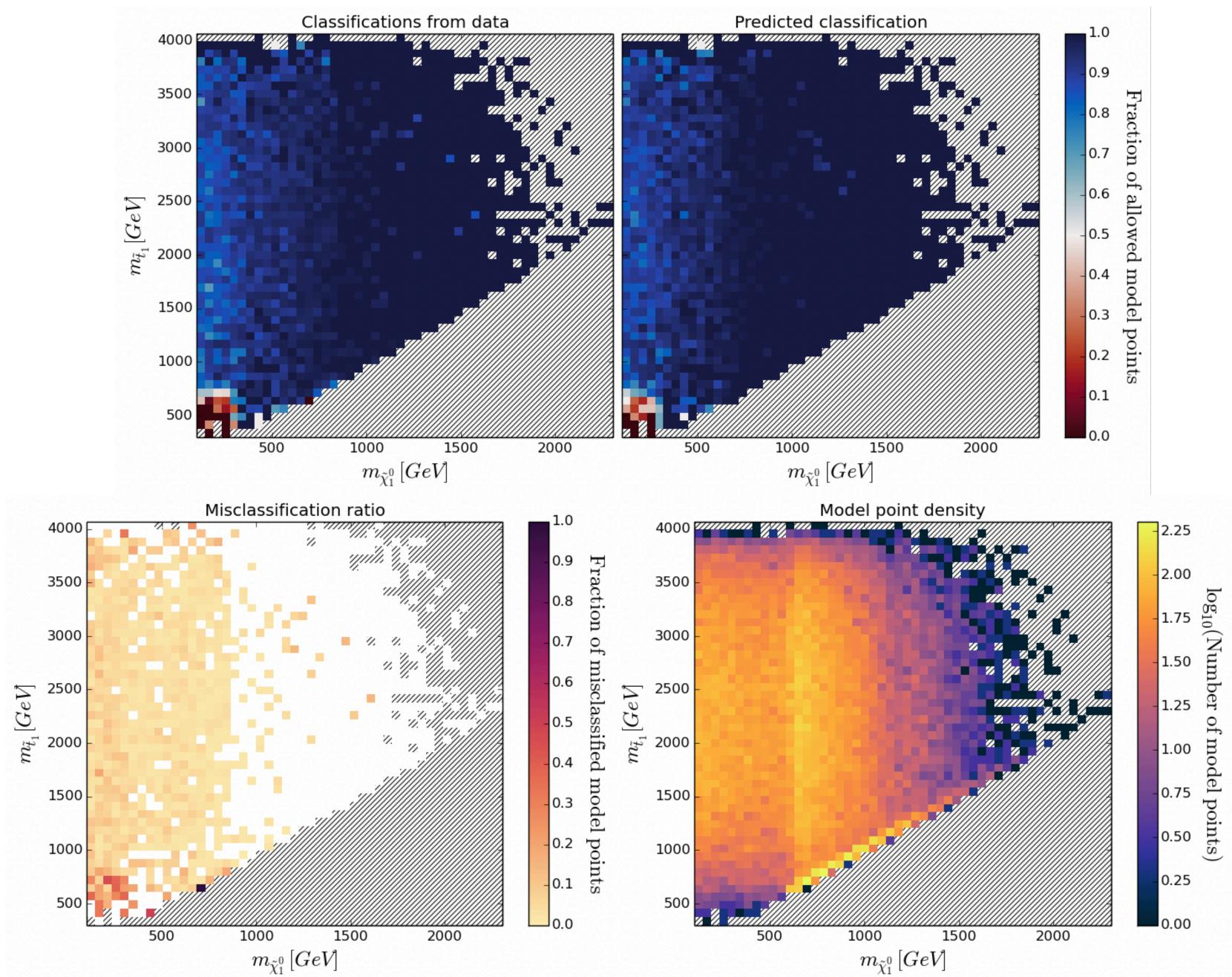
Parameter	Importance	Parameter	Importar
mL1	0.021	M1	0.058
me1	0.019	M2	0.164
mL3	0.014	mu	0.130
me3	0.014	M3	0.242
mQ1	0.079	At	0.013
mu1	0.066	Ab	0.012
md1	0.037	Atau	0.012
mQ3	0.026	mA2	0.031
mu3	0.018	tanbeta	0.019
md3	0.026		

Learning curve

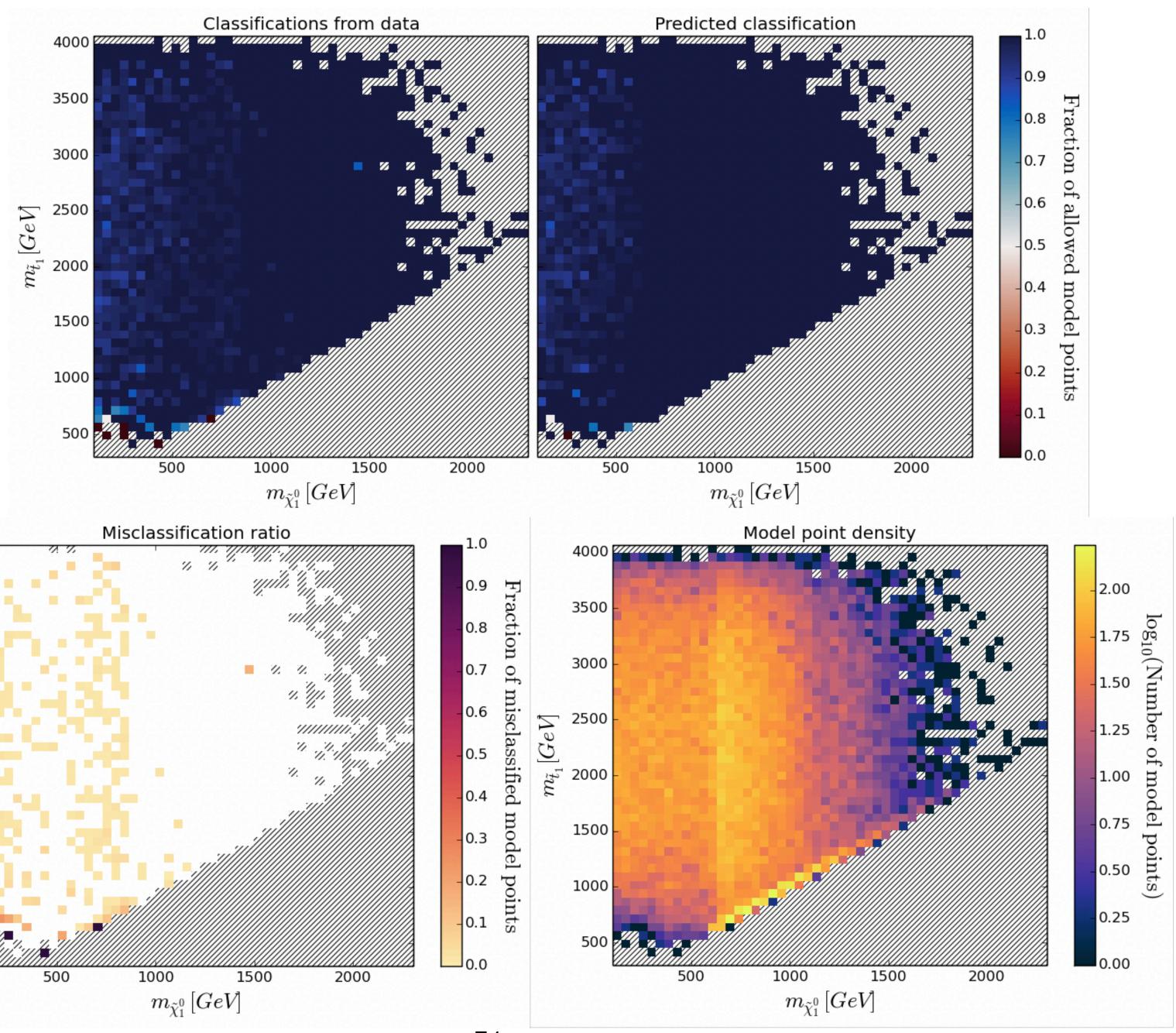


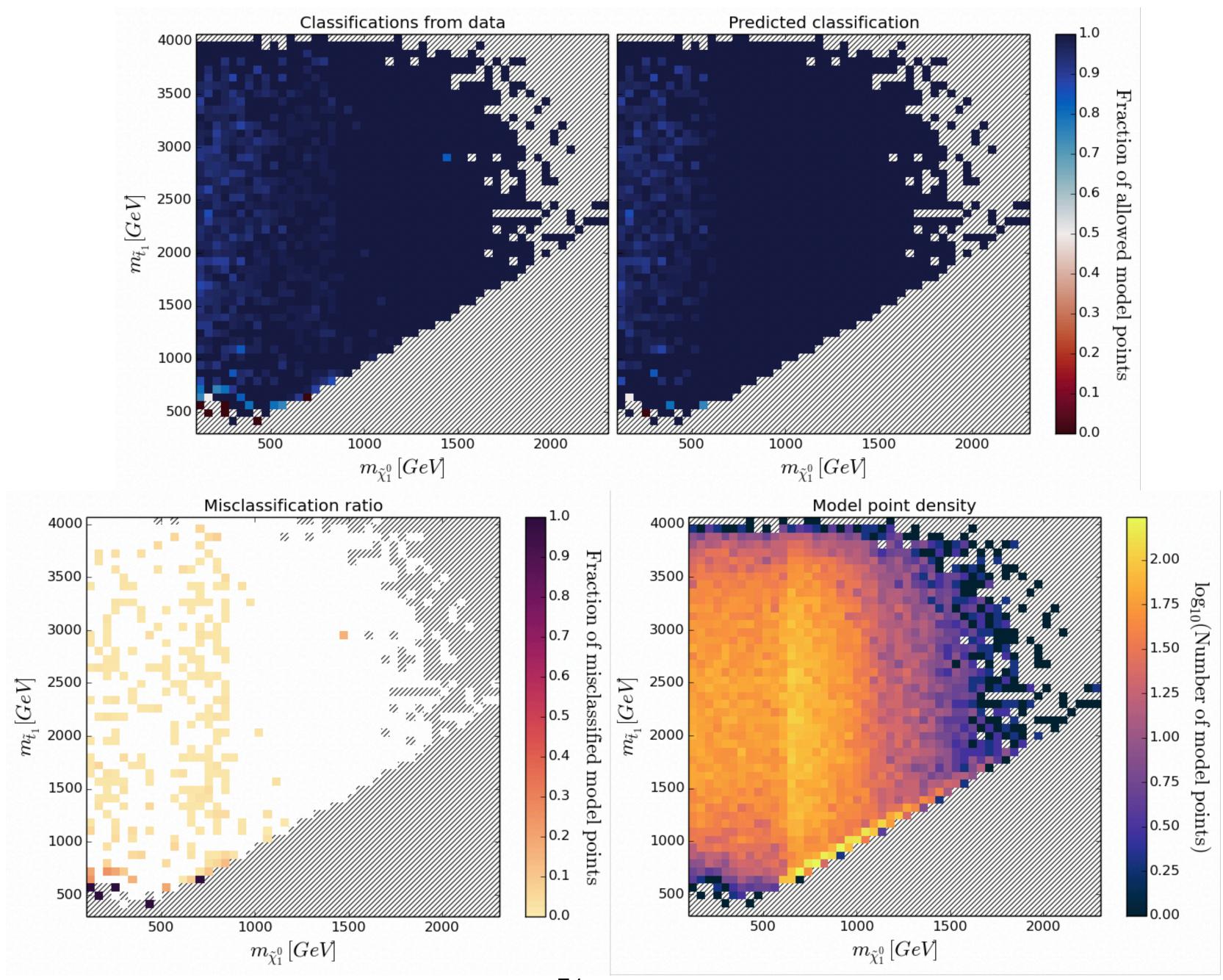
Sparsity



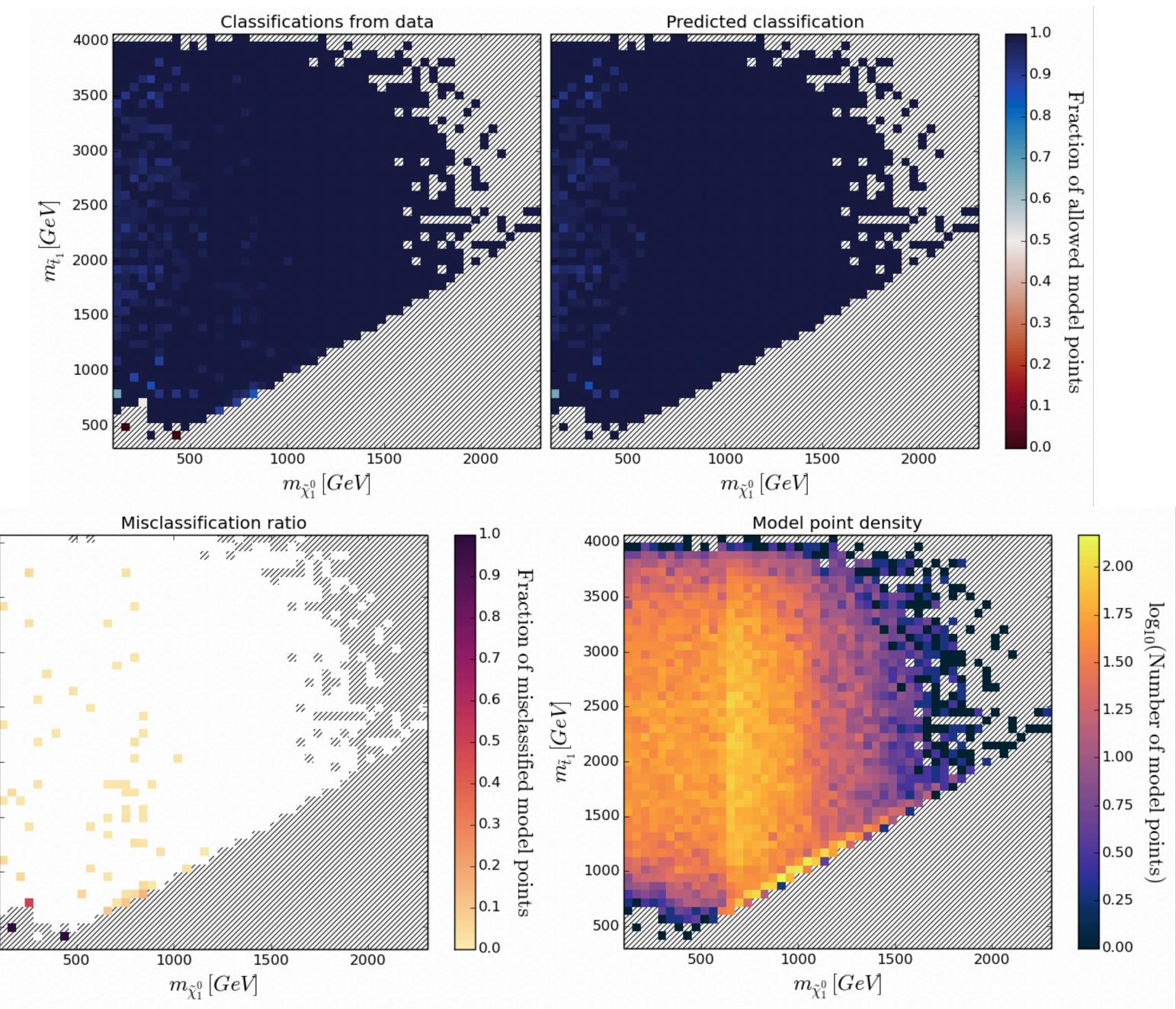


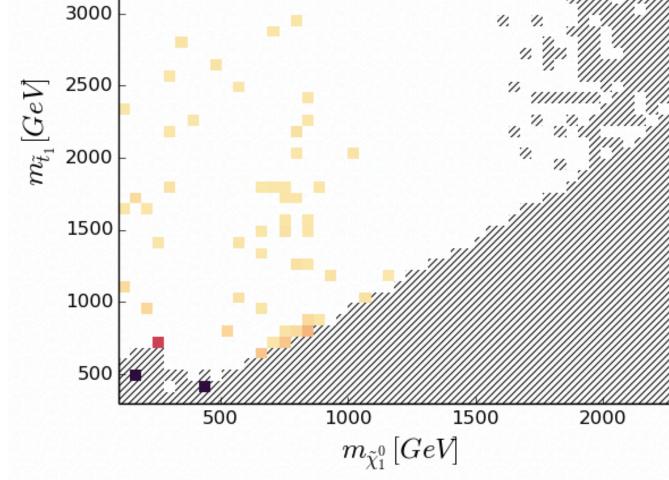
Sparsity 95% CL





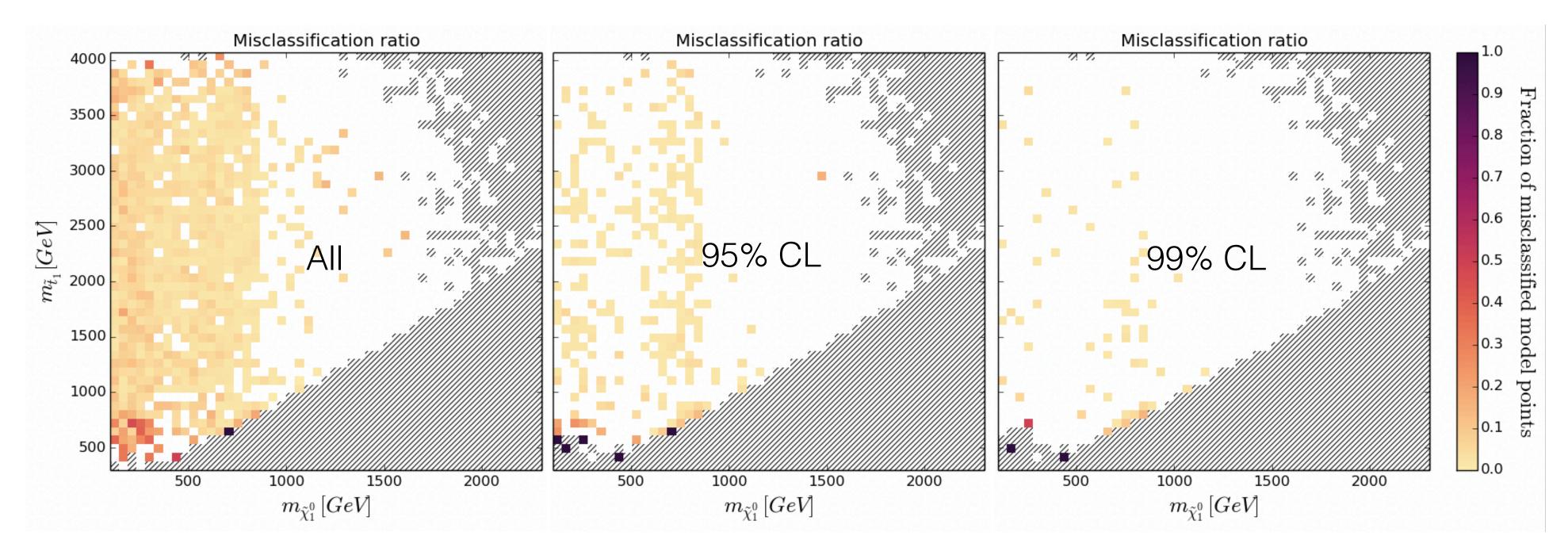
Sparsity 99% CL





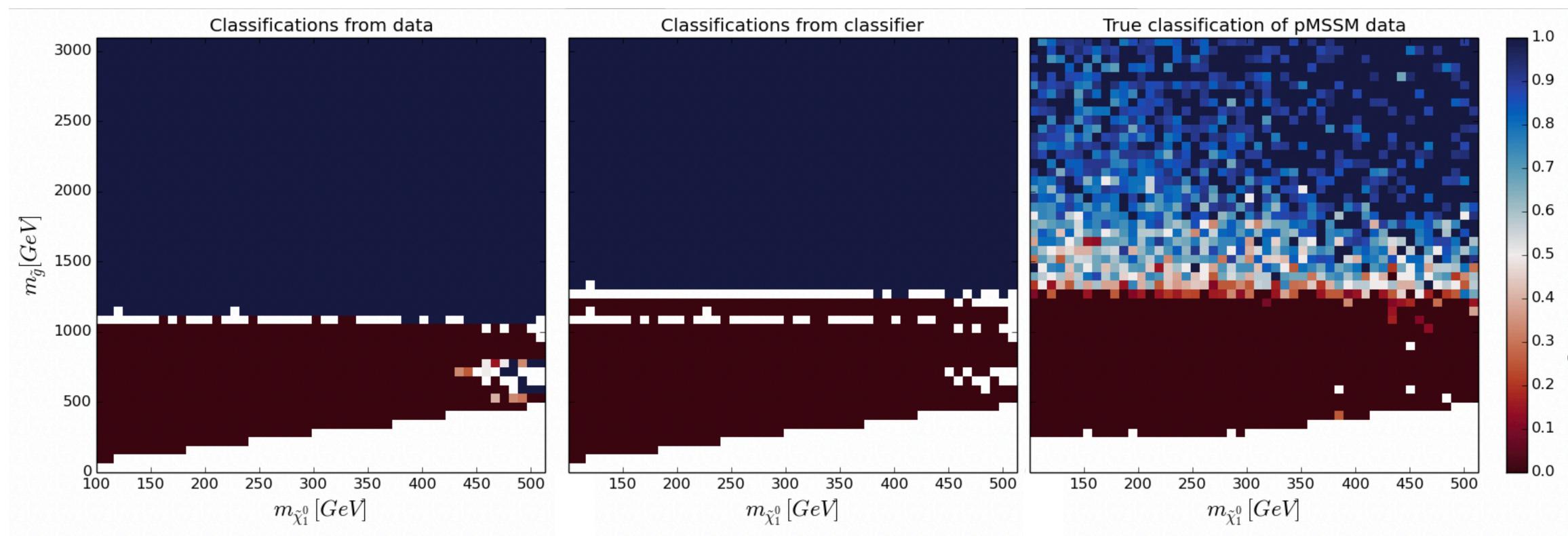
Sparsity

- However: comes at the cost of sensitivity due to data sparsity -> more data is needed

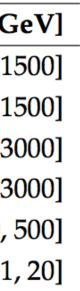


- Errors in low energy region can be taken care of by applying confidence limits

Natural SUSY



	Definition	Scanned range [G
$m_{ ilde{Q}_3}$	3 rd generation left-handed squark breaking mass	[100, 15
$m_{ ilde{U}_3}$	3 rd generation up-type right-handed squark breaking mass	[100, 15
<i>M</i> ₃	Gluino mass parameter	[100, 30
A_t	Stop trilinear coupling	[-3000, 30
μ	Higgsino mass parameter	[100, 5
tan β	Ratio of vacuum expectation values of H_u^0 and H_d^0	[1,



L T UCCIOII	Emotion of allowed model nointe
ID	f.
DaMottp	مالمسمط
Inoder	[vp-v-
Source	minto

Out-of-bag vs train:test split

Accuracy: (TP+TN) / all

Precision: TP / (TP + FP)

Sensitivity TP / (TP + FN)

Negative prediction value TN / (TN + FN)

Specificity TN / (TN+FP)

				C			
\mathbf{CL}	#	# / total	Accuracy	Precision	Sensitivity	NPV	Specificity
0.0	310324	1.0000	0.93226	0.93951	0.94665	0.92152	0.91133
0.68	289371	0.93248	0.95735	0.96072	0.96835	0.95222	0.94094
0.95	219233	0.70646	0.99094	0.99092	0.99426	0.99096	0.98573
0.98	184230	0.59367	0.99543	0.99573	0.99672	0.99496	0.99346
0.99	160034	0.51570	0.99708	0.99747	0.99764	0.99649	0.99624

			<u> </u>	0			
\mathbf{CL}	#	# / total	Accuracy	Precision	Sensitivity	\mathbf{NPV}	Specificity
0.0	77581	1.0000	0.92271	0.91653	0.93049	0.92912	0.91491
0.68	70375	0.90712	0.9545	0.95516	0.95302	0.95386	0.95595
0.95	48900	0.63031	0.99022	0.99047	0.9893	0.99	0.99109
0.98	39815	0.51321	0.99485	0.99559	0.99353	0.99419	0.99604
0.99	34004	0.43830	0.99644	0.99685	0.99554	0.99608	0.99724

Out-of-bag

Dataset splitting train:test = 75:25

SUSY-Al Online

Client-side

SUSY-AI Online SUSY-AI VERSION 1.1.3	S. Caron, J.S. Kim, K. Rolbiecki, R. Ruiz de Astri and B. Stienen, The BSM-AI project: SUSY-AI - Generalizing LHC limits on Supersymmetry with Machine Learning [arXiv:1605.02797]		
	Upload .slha file Direct parameter input		1
SUSY-AI is a machine learning tool that is able to provide in a fraction of a second the exclusion of a pMSSM (sub)model point. This website provides a simple online	Custom parameter selection How to Predict		
interface for quick usage. The full version of SUSY-AI is faster and can provide predicions for multiple modelpoints at the same time. It is under continuing active development and can be downloaded from the hepforge	All data 68CL 90CL 95CL 98CL 99CL Upload a file or enter a parameter set above to start predicting	-	
project page.		ر ب	
		cript	
		CH	
		72.0	
		Java	
		C	

