

The BSM-Al project Learning

Sascha Caron, Jong Soo Kim, Krzysztof Rolbiecki, Roberto Ruiz de Austri, Bob Stienen

netherlands

[arXiv:1605.02797]

SUSY-AI: Reinterpreting SUSY LHC Limits with Machine

Radboud University

Supersymmetry (SUSY)

- Theoretical model of new physics, introducing a symmetry between fermions and bosons
- Minimal version (MSSM) adds $\sim O(100)$ free parameters
- ~19 parameters if only looking at the phenomenologically relevant ones (pMSSM)
- No superpartners are discovered yet... -

The Plot Problem

The Analysis Problem

- Often analyses are only done on simplified models
- Detector simulations only available within the experimental collaboration -
- Determination of exclusion of a single model point is resource intensive -(~O(CPU hours))

- Statistics of big data
 - interpolation
- Wide range of algorithms... (e.g. boosted decision trees, k-nearest neighbours, neural networks)
- ... and applications (e.g. health care, advertising, finance, spam detection, car auto pilots)

- Prediction of data properties based on example (training) data via smart

Data X with known property y

Machine Learning algorithm f(x)

f(x) predicts y

Data X with known property y

New data Xnew with a known value for property y

Machine Learning algorithm f(x)

prediction of y for Xnew

Training

Data X with known property y

Machine Learning algorithm f(x)

prediction of y for Xnew

In itself existing entity

The idea

Training data

>300,000 model points with exclusion as determined by:

- ATLAS at 8TeV [arXiv: 1508.06608]
- Barr & Liu at 13TeV [arXiv: 1605.09502]

All data has correct Higgs mass and relic density, and is not excluded by precision experiments (LHCb, e.g. B_s decay) or by LUX or Xenon100

<u>Algorithm</u>

Random Forest (a smartly constructed set of decision trees) in scikit-learn Python package

Machine Learning as a tool to reinterpret experimental results and to determine the exclusion of model points

Coverage of pMSSM by SMS results

In 1508.06608, ATLAS interpreted the results from 22 separate ATLAS searches in the context of the 19-parameter phenomenological MSSM (pMSSM) [vast scan]

LSP type	Definition	Sampled	Simulated		Wo
			Number	Fraction	we
'Bino-like'	$N_{11}^2 > \max(N_{12}^2, N_{13}^2 + N_{14}^2)$	480×10^{6}	103,410	35%	1/
'Wino-like'	$N_{12}^2 > \max(N_{11}^2, N_{13}^2 + N_{14}^2)$	120×10^{6}	80,233	26%	
'Higgsino-like'	$(N_{13}^2+N_{14}^2)>\max(N_{11}^2,N_{12}^2)$	} 20 × 10° {	126,684	39%	
Total		500×10^{6}	310,327		

Sabine Kraml

ALPS 2017, Obergurgl

Sabine Kraml's talk

9

Performance gluino vs neutralino1

Т

raction

of.

allo

₹

eo

model

points

Performance gluino vs neutralino1

93.2% accuracy @ 8TeV

Performance gluino vs neutralino1

93.2% accuracy @ 8TeV

Performance M1 vs mu

93.2% accuracy @ 8TeV

Performance mA vs tan(beta)

93.2% accuracy @ 8TeV

Confidence

- with degree of confidence on prediction
- Allows for requiring minimum degree of confidence

- Predicted exclusion is continuous (value between 0 and 1), can be associated

Confidence (>95%) gluino vs neutralino1

99.1% accuracy on 70.6% of total data @ 8TeV

99.0% accuracy on 68.0% of total data @ 13 TeV

raction of misclassified model points

Confidence (>99%) gluino vs neutralino1

99.7% accuracy on 51.6% of total data @ 8TeV

99.7% accuracy on 47.6% of total data @ 13 TeV

raction of misclassified model points

Confidence (>95%) mA vs tan(beta)

99.1% accuracy on 70.6% of total data @ 8TeV

99.0% accuracy on 68.0% of total data @ 13 TeV

Confidence (>99%) mA vs tan(beta)

99.7% accuracy on 51.6% of total data @ 8TeV

99.7% accuracy on 47.6% of total data @ 13 TeV

SUSY-AI

- Algorithms (both 8TeV and 13TeV) are publicly available at http://susyai.hepforge.org

```
from susyai import susyai
import numpy as np
sa = susyai("susyai_classifier_python_v3.pkl")
data = np.array([30, 4.0276e2, 7.3196e2, 2.1862e3, 1.0,
          4.0713e3, 4.4890e3, 4.4752e3, 4.4743e3, 2.8806e3,
          3.7855e3, 1.3240e3, 2.9076e3, 4.2226e3, 4.2056e3,
          3.4290e3, 3.8608e3, -4.3154e3, -8.1538e3, -7.3680e3])
clas, pred, cert = sa.predict(data)
```

- Up to 5,000 model point predictions per second / CPU

Modelpoint

excluded / allowed

SUSY-Al online

SUSY-AI Online SUSY-AI VERSION 2.2.1

SUSY-AI is a machine learning tool that is able to provide in a fraction of a second the exclusion of a pMSSM (sub)model point. This website provides a simple online interface for quick determination of exclusion of a model point using the results of ATLAS Run-I (8TeV) and ATLAS Run-II (13TeV). The papers associated with this data can be found here.

The full version of SUSY-AI is faster and can provide predicions for multiple modelpoints at the same time. It is under continuing active development and can be downloaded from the hepforge project page.

Download SUSY-AI

If you use SUSY-AI in your scientific

Conclusion

- data!)
- away!)

[arXiv:1605.02797]

- We created a Machine Learning algorithm that can predict model point exclusion in a fraction of a second

- It works within the <u>general pMSSM</u>, but method is <u>not</u> limited to this parameter space (let me know if you have

Algorithm can be stored: method can be used to communicate multivariate results

Website is online and algorithm is publicly available (you can start applying LHC limits to your data right

Back-up slides

Confidence (>95%) M1 vs mu

99.1% accuracy on 70.6% of total data @ 8TeV

99.0% accuracy on 68.0% of total data @ 13 TeV

Confidence (>99%) M1 vs mu

99.7% accuracy on 51.6% of total data @ 8TeV

99.7% accuracy on 47.6% of total data @ 13 TeV

points

Parameters

Parameter	Description	Scanned range
$\overline{m_{ ilde{L}_1}}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ doublet soft breaking slepton mass	[90 GeV, 4 TeV]
$m_{ ilde{E}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ singlet soft breaking slepton mass	[90 GeV, 4 TeV]
$m_{ ilde{L}_3}$	$3^{\rm rd}$ gen. $SU(2)$ doublet soft breaking slepton mass	[90 GeV, 4 TeV]
$m_{ ilde{E}_3}$	$3^{\rm rd}$ gen. $SU(2)$ singlet soft breaking slepton mass	[90 GeV, 4 TeV]
$m_{ ilde{Q}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ doublet soft breaking squark mass	[200 GeV, 4 TeV]
$m_{ ilde{U}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ singlet soft breaking squark mass	[200 GeV, 4 TeV]
$m_{ ilde{D}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ singlet soft breaking squark mass	[200 GeV, 4 TeV]
$m_{ ilde{Q}_3}$	$3^{\rm rd}$ gen. $SU(2)$ doublet soft breaking squark mass	$[100~{\rm GeV},4~{\rm TeV}]$
$m_{ ilde{U}_3}$	$3^{\rm rd}$ gen. $SU(2)$ singlet soft breaking squark mass	[100 GeV, 4 TeV]
$m_{ ilde{D}_3}$	$3^{\rm rd}$ gen. $SU(2)$ singlet soft breaking squark mass	$[100~{\rm GeV},4~{\rm TeV}]$
A_t	Stop trilinear coupling	[-8 TeV, 8 TeV]
A_b	Sbottom trilinear coupling	[-4 TeV, 4 TeV]
$A_{ au}$	Stau trilinear coupling	[-4 TeV, 4 TeV]
$ \mu $	Higgsino mass parameter	[80 GeV, 4 TeV]
$ M_1 $	Bino mass parameter	[0 TeV, 4 TeV]
$ M_2 $	Wino mass parameter	$[70~{\rm GeV},4~{\rm TeV}]$
M_3	Gluino mass parameter	$[200~{\rm GeV},4~{\rm TeV}]$
M_A	Pseudoscalar Higgs mass	[100 GeV, 4 TeV]
aneta	Ratio of vacuum expectation values	[1, 60]

Analyses run by ATLAS

Category
Inclusive
Third generation
squarks
Electroweak
Other

Decision trees

Random Forest (1/2)

- Combination of multiple decision trees, prediction by majority vote —
- ----trained on unique subset of training data)

Introducing the randomness in the forest: trees are constructed with bagging (each tree

Random Forest (2/2)

- Subsets are of the same size as training data set and data points are selected with replacement \longrightarrow same datapoint can be selected multiple times
- Moreover, only subset of parameters is considered at each node to split on —

~63.2% of model points in subset are unique

Out-of-bag estimation

- Only ~63.2% of training data is used in training of a single tree
- Use remaining 37.8% for independent testing —
- This can be done for every single tree in the forest
- Combined output is independent prediction by forest on its training data \longrightarrow useful for testing purposes (no train:test split needed!)

Out-of-bag vs train:test split

				C)		
CL	#	# / total	Accuracy	Precision	Sensitivity	\mathbf{NPV}	Specificity
0.0	310324	1.0000	0.93226	0.93951	0.94665	0.92152	0.91133
0.68	289371	0.93248	0.95735	0.96072	0.96835	0.95222	0.94094
0.95	219233	0.70646	0.99094	0.99092	0.99426	0.99096	0.98573
0.98	184230	0.59367	0.99543	0.99573	0.99672	0.99496	0.99346
0.99	160034	0.51570	0.99708	0.99747	0.99764	0.99649	0.99624

CL	#	# / total	Accuracy	Precision	Sensitivity	NPV	Specificity
0.0	77581	1.0000	0.92271	0.91653	0.93049	0.92912	0.91491
0.68	70375	0.90712	0.9545	0.95516	0.95302	0.95386	0.95595
0.95	48900	0.63031	0.99022	0.99047	0.9893	0.99	0.99109
0.98	39815	0.51321	0.99485	0.99559	0.99353	0.99419	0.99604
0.99	34004	0.43830	0.99644	0.99685	0.99554	0.99608	0.99724

Out-of-bag

Dataset splitting train:test = 75:25

Construction of confidence measure

Random Forest configuration

Optimal configuration was found via a grid search

- Number of trees 900
- Maximum features considered each split 12 (out of a total of 19)
- Maximum depth of each individual tree 30

Random Forest vs Boosted Decision Trees (1/2)

- boosting respectively
 - them.
 - Boosting: train each tree iteratively to do better on the mistakes of the
- Both bagging and boosting are well understood methods to reduce overtraining.

- Both are sets of decisions trees, but constructed in different ways: bagging vs

- Bagging: introduce randomness in training of the trees and average over

previous trees (increase weight of misclassified points by previous tree)

Random Forest vs Boosted Decision Trees (2/2)

- and its output is more closely linked to prediction confidence
- sometimes. It uses shorter trees and is faster in training and use.

More pragmatic approach: Random Forest not in TMVA (though hard to find), Boosted Decision Trees not in scikit-learn

Bagging is less sensitive to outliers (it tries to correctly classify all data points)

- Boosting reduces in theory both bias and variance, but does tend to overfit

ROC curve

Comparison to model for human

- 20 individual decision trees with maximum depth of 5 (=21 cuts in parameter space)
- Markers are placed at value for cut with the highest accuracy

